基于FPGA的八通道超声探伤系统设计
摘要:文中提出了一种基于FPGA的八通道超声探伤系统设计方案。该系统利用低功耗可变增益运放和八通道ADC构成高集成度的前端放大和数据采集模块;采用FPGA和ARM作为数字信号处理的核心和人机交互的通道。为了满足探伤系统实时、高速的要求,我们采用了硬件报警,缺陷回波峰值包络存储等关键技术。此外,该系统在小型化和数字化方面有显著提高,为便携式多通道超声检测系统设计奠定基础。
关键词:八通道;超声探伤;硬件报警;FPGA
超声波探伤是一种重要的无损检测方法,在大型锅炉、发电机组、铁路桥梁和航空航天等各个工业部门都得到了广泛的应用,并成为保证工程质量、确保设备安全的一种重要手段。
目前国内研制的超声探伤仪器大部分为便携式单通道。这些仪器重量轻,使用方便,便于探伤人员携带使用。但单通道仪器同时具有扫查面积小,速度慢,误判率高等缺陷,不利于扫描大型器件。而少数多通道仪器则都是基于PC机所研制的。这些仪器能够快速扫描各种器件,但是同时具有体积大,价格高等缺点,不利于多通道探伤仪的应用和普及。
针对上述提到的一些问题,结合现代数字信号处理技术和微电子技术,提出了一种基于嵌入式系统和FPGA的便携式八通道超声探伤系统的解决方案。该方案采用ARM9处理器作为主控芯片,利用大容量的FPGA进行并行处理,能够同时满足便携性和实时性两大要求。并能通过以太网接口,将数据快速传输到PC机上,对信号进行进一步的处理。
1 八通道超声探伤系统硬件设计
本系统的硬件总体框图如图1所示。系统主要包含前端发射接收电路、八通道模数转换电路,FPGA数据处理与逻辑控制系统和ARM后处理模块4个部分组成。
前端发射接收电路的主要作用为生成用于激发探头阵元产生超声波的高压脉冲,接受回波,以及实现对回波信号进行数控增益。ADC将采样的模拟信号转化成数字信号。FPGA模块主要实现对数据的FIR滤波,非均匀压缩,硬件报警,峰值包络的存储,以及相关的控制逻辑。ARM后处理模块主要实现波形显示、通道切换、频谱分析、参数预置、人机交互等功能和一些相关外设的驱动。
1.1 前端发射接收电路
前端发射接收电路是实现八通道超声设备主要性能指标的关键。一般由探头触发电路,隔离网络,带通滤波器,可变增益放大器(VGA)4部分级联而成。
可变增益放大器部分由三级可变增益AD8331级联而成。AD8331是一款单通道、超低噪声、线性dB可变增益放大器(VGA),针对超声系统应用进行了优化,可以用作低噪声可变增益元件。这款器件内置一个超低噪声前置放大器(LNA)、一个48 dB增益范围的VGA以及一个具有可调输出限制功能的可选增益后置放大器。经过三级级联和调试以后能够实现0~120 dB的增益动态范围。
1.2 八通道数模转换电路
本系统采用AD9212作为八通道模数转换器。AD9212是ADI公司推出的一款八通道,10位采样精度模数转换器。该器件内置采样保持电路,低成本,低功耗,小尺寸,单片集成八个通道的AD电路,能够极大的减少电路设计的工作量和所需的电路板的面积。与此同时,AD9212采用串行LVDS数据输出和DDR操作,既具有较高的数据输出速率,又能减少所需的接口IO资源。
1.3 数据处理与逻辑控制模块
在本系统中,数据处理与逻辑控制子系统承担着实时处理八通道数据,配置八个通道的参数,以及操作总线与ARM进行通信的任务。FP GA具有丰富的可编程资源,集成度高,实现灵活,能够很好的满足设计要求。
数据处理与逻辑控制子系统的结构框图如图2所示,该子系统主要分成数据处理部分和逻辑控制部分。数据处理模块实时处理数模转换器传输来的数据流,逻辑控制模块负责控制外设以及FPGA内部各个模块的时序。数据处理模块包括DDR2串并转换,将AD转换器传输的DDR数据串行转换成并行数据。并行数据经过FIR滤波器,去除了模拟前端引入的噪声,最后通过检波和非均匀压缩以后得到包络数据。逻辑控制模块主要实现发射的正负延时控制,增益的控制以及该子系统的状态监测和控制。
fpga相关文章:fpga是什么
模数转换器相关文章:模数转换器工作原理
评论