新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 主动“ORing”方案降低了功率损耗和设备尺寸

主动“ORing”方案降低了功率损耗和设备尺寸

作者:时间:2009-06-18来源:网络收藏

主动“包括一个功率MOSFET和一个集成电路控制器。MOSFET的导通电阻RDS(on)会在其内部产生(通过器件的电流的平方与电阻的乘积)。

本文引用地址:http://www.amcfsurvey.com/article/188901.htm


如果在肖特基二极管“中实现相等电流,该中的损耗将降低为原来的十分之一。这就说明,一个主动“”方案可以比标准“ORing”二极管方案更小,由于它非常低的功率消耗,就充分降低了对散热系统的依赖。


然而,主动“ORing”方案确实是一个折中的方案。当MOSFET打开的时候,电流的方向不受限制。正是由于这个特点,主动“ORing”方案可以非常准确和非常快速地检测出由于反向电流而产生的故障。一旦检测到故障,控制器就需要尽可能快地关闭MOSFET,并依次从冗余总线上隔离输入故障,阻止反向电流的进一步增加。

合适的方案
当着手选择合适的“ORing”方案时,关键的问题是理解特殊应用的基本边界条件,然后选择哪种类型的“ORing”方案就非常清楚了。但这并非毫无遗漏,还存在一些典型的边界条件,这些边界条件如下所示:


● 系统所处的环境温度上升到最高温度,功率方案必须保持可靠工作。


● 系统位于特定不可动建筑物中时。


● 可获得的散热手段(风扇、散热片、PCB 面积等)。


● 最坏故障条件(“ORing”方案的响应时间和速度非常关键)。


在特殊应用环境中分析典型二极管“ORing”方案与典型主动“ORing”方案的异同是非常有价值的。下面的分析示例是在环境温度为70℃,负载电流为20A情况下的分析过程。


典型二极管功率消耗(PD(diode)):VF×IF=~0.45V×20A=9W。


主动“ORing”方案的功率消耗(PDFET):ID2×RDS(on)=(20A)2×1.5mΩ=0.6W。


此处1.5mΩ是Picor公司PI2121 Cool-ORing器件的典型RDS(on)。


如果器件工作的最大结点温度保持在125℃,则需要的散热条件为
TJ=Tamb+(PD×Rthj-a)
式中:

TJ=器件结点温度。
Tamb=系统环境温度。
PD=器件功率消耗。
Rthj-a=热阻(结点-环境)。
Rthj-a需要维持二极管的125℃结点温度大约是6℃/W。
Rthj-a需要维持MOSFET的125℃结点温度大约是92℃/W。


Rthj-a数值越高,散热的费用与总体拥有成本之间的依赖关系就越低,这就使“ORing”方案非常吸引人。主动“ORing”方案的好处表明,这是提供最小解决方案的最好办法,如果不可动建筑的价值非常高。高密度单封装系统(SiP:System-in-a-Package)产品是解决高密度问题的最好途径,它所提供的IC-FET优化可以增加电子性能的改进。使用工业标准封装的分立解决方案具有先天的局限性,如器件、器件之间的PCB空间,以及隐藏在整体密度和电子性能后面的寄生偏移。


必须精确确定MOSFET两端的电压和极性,这代表流过整个器件的电流。在故障事件被触发之前,反向门限将决定通过MOSFET的反向电流总和,而且控制器的栅极驱动特征将决定MOSFET的关断时间,并因此产生了通过MOSFET的反向峰值电流。门限越低、栅极驱动越高,则将确保更早地检测并降低总体反向峰值电流,并且最终降低任何冗余总线电压降落的可能。

主动“ORing”方案
Picor公司有一个主动“ORing”方案(Cool-ORing系列),包括一个高速“ORing” MOSFET控制器和一个具有低导通电阻的MOSFET,采用高密度强化散热的LGA(Land-Grid-Array)封装。这个方案可以达到低至1.5mΩ的典型导通电阻,可以在整个比较宽的温度范围内工作,并能够提供高达24A的持续负载电流。


LGA封装是非常小的5mm×7mm封装形式,它提供了强化散热,并能够用于低压、高边(如图1所示)主动“ORing”应用中。Cool-ORing方案与常规主动“ORing”方案相比提供了超过50%的空间节省。

图1 PI2121典型应用:高边主动“ORing”技术



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭