采用射频功率MOSFET设计功率放大器
1. 引言
本文设计的50MHz/250W 功率放大器采用美国APT公司生产的推挽式射频功率MOSFET管ARF448A/B进行设计。APT公司在其生产的射频功率MOSFET的内部结构和封装形式上都进行了优化设计,使之更适用于射频功率放大器。下面介绍该型号功率放大器的电路结构和设计步骤。
2.50MHz/250W射频功率放大器的设计
高压射频功率放大器的设计与传统低压固态射频功率放大器的设计过程有着显著的不同,以下50MHz/250W功率放大器的设计过程将有助于工程技术人员更好的掌握高压射频功率放大器的设计方法。
2.1射频功率MOSFET管ARF448A/B的特点
ARF448A和ARF448B是配对使用的射频功率MOSFET,反向耐压450V,采用TO-247封装,适用于输入电压范围为75V-150V的单频C类功率放大器,其工作频率可设置为13.56MHz、27.12MHz和40.68 MHz。ARF448A/B的高频增益特性如图1所示。从图中可以看出,当频率达到50MHz时,ARF448的增益约为17dB。
2.2 设计指标
50MHz/250W功率放大器的设计指标如下:
(1)工作电压:>100V;(2)工作频率:50MHz;
(3)增 益:>15dB;(4)输出功率:250W;
(5)效 率:>70%;(6)驻波比:>20:1;
2.3 设计过程
功率放大器的输入阻抗可以用一个Q值很高的电容来表示。输入电容的取值可以参照相应的设计表格,从中可以查出对应不同漏极电压时的电容取值。当ARF448的漏极电压为125V时,对应的输入电容值为1400pF。输入阻抗取决于输入功率、漏极电压以及功率放大器的应用等级。单个功率放大器开关管负载阻抗的基本计算公式如式(1)所示。
注意,利用公式(1)可以准确的计算出A类、AB类和B类射频功率放大器的并联负载阻抗,但并不完全适用于C类应用。对于C类射频功率放大器,应当采用式(2):
可以算出,当Vdd为150V时,Rp的取值相当于Vdd为50V时的9倍,这对输出负载匹配非常有利。但是,需要注意的是,此时功率 MOSFET输出电容的取值并没有发生明显的变化。由于高压状态下的并联输出阻抗显著增大,输出容抗也将显著增大。换句话说,此时输出容抗将起主要作用。因此,在设计过程中,应当采取相应的措施克服输出容抗的作用。
评论