新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于遗传算法和扰动观察法的MPPT算法

基于遗传算法和扰动观察法的MPPT算法

作者:时间:2010-05-17来源:网络收藏
在所有可再生能源利用中,光伏发电无疑是最有发展前景的。但是,光伏发电系统的一个主要缺点是它的输出功率受天气情况影响严重,如光照强度和环境温度的改变都会使它发生变化。太阳能电池阵列的最大功率点跟踪就是使太阳能电池阵列的工作点能随外界环境做出适当调整,达到任何时刻都能输出最大功率的目的。

遗传(GA)是一类以Darwin自然进化论与Mendel遗传变异理论为基础的求解全局优化问题的仿生型。把遗传应用于最大功率点跟踪中,可以使逆变器克服外界环境的剧烈变化造成的干扰,迅速搜索到最大功率点。但是,由于遗传算法搜索到最大功率点后,并不能稳定地工作于最大功率点,所以在此使用扰动观察法作为最大功率点附近的搜索算法。

1 太阳能电池模型

考虑到温度和太阳辐射强度改变的影响,苏建徽等提出了一种硅太阳电池工程用数学模型如下:



式中:I为太阳能电池的输出电流;U为太阳能电池的输出电压;Isc为太阳能电池的短路电流;Uoc为太阳能电池的开路电压;Im为太阳能电池输出最大功率时的输出电流;Um为太阳能电池输出最大功率时的输出电压。

目前太阳能电池的制造商都会给出太阳能电池在标准状况下(25℃@1 000 W/m2)的Isc,Uoc,Im,Um。在实际应用中,应该根据下式调整这些参数:



通常a=0.002 5;b=0.5;c=0.002 88。苏建徽等对大量太阳能电池进行实验,结果证明这些补偿方法的应用可以保证模型与实际情况的误差小于6%,因此这个模型可以应用于太阳能电池的仿真。根据这个模型,太阳能电池的特性曲线如图1所示。


2 Boost变换器模型

在此采用Boost变换器作为前级DC-DC变换器,其拓扑结构如图2所示。


杨海柱等通过对Boost变换器的状态空间模型进行线性化处理后,得到式(2)所示的模型:



因此,太阳能电池的工作点可以通过调节占空比D来控制。实际上,光伏系统的最大功率点跟踪就是通过调节DC-DC变换器的占空比D,使外电路阻抗和太阳能电池的阻抗匹配。

上一页 1 2 3 下一页

关键词: MPPT 算法

评论


相关推荐

技术专区

关闭