手机可以利用体温来充电
手机已成为人们生活中不可缺少的通信工具。目前手机都是由可充电的锂离子电池供电,在野外或无市电的情况下,手机随时可能没电,这给使用者带来许多不便。
本文引用地址:http://www.amcfsurvey.com/article/180707.htm经研究人体与环境之间总是存在温差,利用温差电技术可实现真正意义上的手机永不断电。温差电技术是绿色环保的发电技术,是一种新的能源替换方式,可将低品位热源的热量有效地转化为电能,同时减少能量消耗,缓解环境污染问题。
2.1 人体的能量
正常情况下,人体发出的红外波长为8~12μm,人体基础代谢24 h内所产生的热能为8 059.8 kJ,一个成年人的皮肤展开后其表面积约为2 m2,以每平方米体表面积为衡量标准,能量代谢在1 h内产生的平均热量约167.9 kJ/(m2・h)。人体的主要散热部位是皮肤,当环境温度低于体温时,大约70%的体热通过皮肤的辐射、传导和对流散热消耗掉。四肢末稍皮肤温度最低,越接近躯干、头部,皮肤温度越高。在寒冷环境中,随着气温下降,手、足的皮肤温降低最显著,但头部皮肤温度变动相对较小。可以看出,头部皮肤温度最高,且随环境温度变动相对较小。因此手机体温充电系统适合安装在帽子内部,可提高充电效率。
手机的锂离子电池可通过充电或添加能量物质重复使用,其额定电压容量一般为3.6 V(也有的为3.7 V)。如AA800 mAh的锂离子电池平均工作电压为3.6 V,则其能量为2.88 Wh,而人体皮肤单位面积单位时间辐射的热量约为32.65 W/m2,由能量转换可知,面积为1 m2的人体皮肤辐射1 h的能量约为32.65 Wh,如果以0.2 C(160 mA)的充电率给锂离子电池充电,则需要5 h可充满能量为2.88 Wh的锂离子电池,其能量转化效率的理论值约为1.76%,泰柯斯(Telkes)在1947年研制出一台温差发电器,其发电效率为5%。因此,该转化效率在很久以前就可满足要求,人体的体温为手机充电在能量转换方面是完全可以实现的。
2.2 塞贝克效应
温差发电可直接将热能转换成电能,只要存在温差,温差发电模块就能产生电压。人体与环境温度常存在温差,利用温差电技术可转化为电能为手机充电。研究发现将两种半导体结合,并使其一端处于高温状态(热源),而另一端开路并且处于低温状态(冷源),则在冷源端会产生开路电压△U,称为温差电动势,也称为赛贝克电动势,赛贝克电压△U与热冷两端温度差△T成正比:
△U=s△T=s(tH-tL) (1)
式中,s称为塞贝克系数,其单位是V/K或μV/K。塞贝克系数由材料本身的电子能带结构决定。
3 手机体温充电系统
如图1所示,手机体温充电系统主要包括3部分:直流电产生模块、升压稳压电路模块和手机充电接口。直流电产生模块主要利用半导体温差电池组产生直流电能,只要环境与人体皮肤之间存在温差,温差电池组两端便产生电压。半导体温差电池组产生的电压较小,为了减少温差电池的数量,拟采用升压电路实现升压,满足手机充电要求。由于环境温度不稳定,则两者之间的温差很难稳定,则半导体温差电池组产生的电压就很难稳定,不满足锂离子电池充电电路的要求,为此必须对电压进行稳压处理后才可给锂离子电池充电电路提供电能。
从制造的难易程度和成本等方面考虑,半导体温差电池组由单个发电单元构成是不合理的,这样其输出功率很低。通过优化设计,在相同的半导体用料情况下,用串联方式将若干较小的N-P电偶相连接,形成如图3所示的半导体温差电池(热电堆)。在温差电池中,每个电偶对都工作在相同的温差下,他们的作用也相同,因此整个温差电池的输出功率就是单个N-P电偶输出功率乘以总的对数,一个拥有N对热电偶的半导体温差电池(热电堆)的热电电压U为
U=Ns(tH-tL) (2)
从结构可看出,半导体热电偶对在电路上是串联的,但在传热上是并联的。温差电池的两端维持在环境与人体之间的温差下,电流就会在回路中连续流动。
描述半导体温差电池热电转换性能的主要参数有发电效率和输出功率。当负载电阻RL和温差电池本身的电阻R相匹配时,负载能够从半导体温差电池中获得最大的输出功率,材料的优值系数Z对于半导体温差电池的发电效率和输出功率都很重要,而Z主要与半导体电偶臂的性质有关,对于材料温差电特性一定的温差电偶,优值并不是一个常数,而是与温差电偶的几何尺寸有关。电偶臂的长度小于1 mm时,输出功率和发电效率均随电偶臂长度的增加而提高;而当其长度超过5 mm后,输出功率和发电效率均趋于定值。用多晶硅形成热电偶,串联组成热电堆,采用0.8 V低启动电压的升压器件,可计算出人体体温经该升压器件给手机充电需要约809个热电偶,将这些热电偶阵列串联组成热电堆。假设环境与人体的温差为9℃,转化效率为15%,只需要面积约为0.012 721 m2的人体皮肤,即只用到人体皮肤总面积的1/158。为了满足手机锂离子电池的充电要求,还需进一步提高温差产生的电压和电流,可将半导体温差电池进行串联和并联形成温差电池组,将半导体温差电池作为电源,其串并联的情况与其他电源的串并联并无本质区别。
在1片长方形绝缘基片上采用热电堆的生产工艺,将P型半导体和N型半导体材料镀到基板上,制成1片包含有数百只热电偶的单元,在其两端镀上连接点形成热电堆(温差电池),再将若干个热电堆串并联组成温差电池组,两边焊好引线接到升压稳压电路模块。
半导体温差电池组的热电堆之间留有一定间隙,该间隙是为使配备者舒适而设置的排汗孔道,把温差电池组缝到特制的马夹上或帽子里边,穿戴在身上,让热电偶的热端面紧贴皮肤,冷端面暴露在空气中,此时直流电产生模块就开始输m电压。
3.2 升压稳压模块
体温与外界环境之间的温差较小,热电偶产生的电压也较小,而为手机充电需要4.2 V电压,如果全部由热电偶转换,则需要很多热电偶。采用升压器件可解决这个问题。
根据塞贝克效应,直流电产生模块两边的温差不稳定,输出电压也会不稳定。因为很难将环境温度(冷端的温度)控制在一个固定值,所以输出电压需经过稳压后才能送入手机。根据手机充电要求,选择升压DC/DC转换器件PT1301实现升压稳压电路,如图4所示。输出电压由两个外部电阻设定,即输出电压
调整R1、R2的阻值,使输出电压U0稳定在4.2 V,输出电流为160 mA。
评论