新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 一种用于氩弧焊机的电源系统解决方案

一种用于氩弧焊机的电源系统解决方案

作者:时间:2012-02-02来源:网络收藏

1 引 言

本文引用地址:http://www.amcfsurvey.com/article/177989.htm

本文讨论的焊接是电弧中的核心部分,是用来对焊接电弧提供的一种专用设备。现有的焊接存在引弧困难、电流控制精度低、电网电压波动大等问题。

众所周知,我国的工业电网采用三相四线制交流供电,频率为50Hz,相电压为220V,线电压为380V。而氩弧焊要求的电压一般大约为20V~40V,电流在几十至上千安。本文主要研究内容的难点是:对焊接电流能够精确控制,焊接时保持焊接电流平稳,电弧挺度好,要求焊接电弧可以在焊接电流为1A~100A时稳定燃烧;在焊接过程中,能一边焊接,一边记录焊接电流值、电压值;高频引弧时,屏蔽对计算机及外界的干扰。

2 硬件设计

2.1 体系结构

焊接电源的结构框图如图1所示

图1中的引弧电源和焊接电源都是由主电源经过变压、整流、滤波后产生的直流电源。图中晶体管组由多个晶体管并联而成,并带有驱动电路。

焊接设备的各组成部分作用如下:引弧电源部分在焊接引弧时提供高压,方便了顺利地引弧,串联限流电阻R防止引弧电源在焊接回路中产生大电流,此外,二极管D防止引弧时电流反向流经焊接电流;焊接电源为焊接回路提供大电流;晶体管组部分控制焊接电流;继电器电路部分输出开关信号,如高频发生器的通短等;焊接电流采样电路部分对焊接电流进行采样,输出到反馈电路,进行电流控制。

焊接电压采样电路对电弧电压进行采样,然后将采样值直接输入到计算机进行数据处理。图1中的焊接电流取样元件与焊接电压取样元件均采用霍尔器件。这种器件采用霍尔原理进行工作,所检测的对象与得到的信号完全隔离。这样,可以避免焊接电路中的强干扰信号传递到控制

图1中的控制电路是一个带有反馈的闭环控制系统。这个反馈系统的输入值由计算机的数据处理板的D/A给出。输入值与焊接电流取样值相减后放大,然后通过电阻电容组成的滞后网络,再行隔离、放大后输出给晶体管的基极,利用深度负反馈原理得到稳定的焊接电流。由自动控制原理可知,当系统的开环放大倍数足够大时,系统的输入与输出相等,故,焊接电流能以足够的精度跟踪计算机给出的焊接电流给定值。

图1中的继电器电路控制继电器开关动作、反馈电路、工业控制计算机,由于与本文无关,故免述。

2.2 高频引弧电源的实现

国内外在解决自动焊接设备的引弧问题上已经做过很多有益的工作,有以下四种方法较为典型:

第一种方法是采用高频引弧。引弧时,让钨极末端与焊接表面之间保持一定的小间隙,然后,接通高频振荡器脉冲引弧电路,使间隙击穿放电而引燃电弧。这种方法比较可靠,且可防止焊缝产生夹钨缺陷,只是必须对这一强干扰源进行隔离或屏蔽,以防止高频放电对控制系统或计算机系统造成干扰和破坏。

第二种方法不用高频,但仍采取非接触引弧的方法。具体的做法是,在引弧开始时,利用辅助热源先对钨极进行加热,提高钨极的热电子发射能力,这样,钨极在较低的空载电压下能引弧成功。这种引弧方法需要一套较为复杂的辅助机构,使焊枪的结构复杂,也使焊接设备复杂程度有所增加。

第三种方法为间接接触引弧方法,即,在工件与钨极之间插入一个辅助电极,使其间接接触短路,以达到接触引弧的目的。

第四种方法是高压脉冲引弧,在钨极与工件之间加一高压脉冲,使两极间气体介质电离而引弧。

本文选用一种新型的高频引弧器,不仅起弧容易,而且对外界干扰小。高频引弧电路原理图见图2。

图2中,T1称为中频升压变压器,L2与T2组成火花放电器,T2为高频耦合变压器。为了说明这种新型高频引弧器的工作原理,可将其分为两部分,以T1为界,其左半部为中频脉冲发生器,右半部分为高频脉冲发生器。

中频脉冲发生器的主要功能是将工频正弦电压变换成中频脉冲电压。整流桥输出的整流电压经过R1对电容C充电,当充电电压达到稳压管的击穿电压时,晶闸管Vt迅速导通,于是,已被充电的电容C将与中频生压变压器T1的原边电感L1发生电磁振荡。当流过Vt的正向振荡电流小于它的维持电流时,Vt关断。于是,在L1上形成一个完整的脉冲电压。这时,由于Vt关断,整流桥输出的整流电压再次通过R1对C充电,当充电电压再次达到稳压管的击穿电压时,Vt再次导通,于是,已再充电的C将再次与L1发生电磁振荡。同样,当流过Vt的正向振荡电流再次小于它的维持电流时,Vt再次关断。于是,在L1上又形成一个完整的脉冲电压。依此类推,这样的过程将不断地进行下去,于是,在L1上便得到了幅值为稳压管的击穿电压的中频脉冲电压,其频率和脉宽主要由稳压管的击穿电压、L1、C、R1等决定。

高频脉冲发生器的主要功能是在中频脉冲的作用下输出高频电压。由中频发生器产生的中频脉冲电压经中频升压变压器T1的升压,将通过高频耦合变压器T2的原边电感L2对电容Ck快速充电(因时间常数L2×C3很小),当充电电压达到火花放电器的放电电压(由火花放电器的电极材料和空气隙大小而定)时,便发生火花放电。火花放电器的空气隙接近电性短路状态。于是,已充电的Ck将通过火花间隙和L2发生能量交换,而在回路里形成高频的电磁振荡。再经T2耦合,即可输出高频高压,其频率主要由L2和Ck决定。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭