新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于MAX16834的buck-boost LED驱动器设计

基于MAX16834的buck-boost LED驱动器设计

作者:时间:2012-02-12来源:网络收藏

本参考用于 采用电流模式高亮度,利用评估(EV)板实现此方案。本应用笔记提供设计说明、原理图、材料清单(BOM)以及性能数据。 该参考设计中,转换器(以输入电压为参考)从7V至18V直流电源产生驱动4个白光 (WLED)的350mA电流,设计采用电流模式高亮度(HB) LED

本文引用地址:http://www.amcfsurvey.com/article/177914.htm

MAX16834 pdf datasheet:http://www.elecfans.com/soft/39/2008/200808187352.html

LED驱动器规范

  • 输入电压:7V至18V
  • 输入电压纹波:100mVP-P
  • LED电流:350mA
  • LED电流纹波:5% (最大值)
  • LED正向电压:3.5V (350mA时)
  • LED数量:4只(最大值)
  • 输出过压保护:17.2V

输入端

  • VIN、PGND:电源输入
  • PWMDIM、SGND:PWM调光输入

输出端

  • LED+:连接LED阳极至LED+
  • LED-:连接LED阴极至LED-

图1. MAX16834EVKIT用于实现参考设计的功能
详细电路(PDF, 60.64kB)
图1. MAX16834EVKIT用于实现参考设计的功能

图2. LED驱动器原理图
图2. LED驱动器原理图

元件列表* (材料清单BOM)

DesignatorQuantityDescription
C1, C7, C832.2µF, 25V X7R, ceramic capacitor (0805)
C212.2µF, 25V X7R, ceramic capacitor (0805)
C11110µF, 16V X7R, ceramic capacitor (1206)
C3, C12, C14, C1540.1µF, 16V X7R, ceramic capacitor (0603)
C1311.5nF, 10V X7R, ceramic capacitor (0603)
C16, C1821nF, 10V X7R, ceramic capacitor (0603)
Cx1100pF, 10V X7R, ceramic capacitor (0603)
D11MAZS0680ML, 6.8V Zener diode, SSMINI
D21B160B, 1A, 60V Schottky diode
L11MMS1038-223ML, 22µH, 2.34A inductor
N1, N22SI2318DS, 40V, 3A, n-channel MOSFET (SOT23)
R1134kΩ ±1% resistor (0402)
R219.53kΩ ±1% resistor (0402)
R712.2kΩ ±1% resistor (0805)
R510.56kΩ ±1% resistor (0803)
R910.15Ω ±1% resistor (0603)
R101310Ω ±1% resistor (0402)
R111243kΩ ±1% resistor (0402)
R12122.1kΩ ±1% resistor (0402)
R13113.1kΩ ±1% resistor (0402)
R14110kΩ ±% resistor (0402)
R15111kΩ ±1% resistor (0402)
R161 23.2kΩ ±1% resistor (0402)
R17126.7kΩ ±1% resistor (0402)
U11MAX16834ATP+ 20-pin, 4mm x 4mm TQFN-EP
*元件标识与MAX16834评估板一致。

详细说明

将boost转换器输出负端连接到输入电源正端,构成转换器(以输入电压为参考)。

在此设计一款buck-boost转换器(以输入电压为参考),从7V至18V直流电源产生350mA电流,驱动4个白光LED (WLED) (每个WLED在350mA时的正向压降为3.5V)。MAX16834 HB LED驱动器集成了峰值电流模式控制器
,工作于CCM (连续导通模式),开关频率为495kHz。开关频率通过R15电阻(11kΩ)设置。

输入、输出电压变化时,MAX16834控制电感的峰值电流,保证LED的电流为350mA。检测LED回路的电流检测电阻
两端的电压,然后将其在内部放大9.9倍,这样可以减小检测电阻的阻值,从而提高效率。经过放大的电压与R16和R17设定的基准电压进行比较,其差值由一个GM = 500µS的跨导放大器进行放大,输出信号在COMP引脚产生控制电压,此电压设置电流环路的基准,这样,电感电流检测电阻R9两端的电压峰值最终成为此控制电压。

转换器设计

转换器设计参数如下:

  • 输入电压范围:7V至18V
  • 输入电压纹波:100mVP-P
  • LED正向最大电压:14V (即4 x 3.5V)
  • LED电流:350mA
  • LED电流纹波:5% (最大值)
  • 开关频率:455kHz

按照式1计算N2的最大占空比:

式1.

其中,VLEDMAX是LED最大电压,VINMIN是最低输入电压,VD是二极管压降,VDS是FET开关导通时的平均压降。

本应用中,DMAX为0.69。

电感(L1)选择

选择电感,需要知道其电感量和峰值电流。峰值电感电流可用式2计算:

式2.

其中,ILAVG为平均电感电流,ΔIL为电感电流纹波,表示为平均电感电流的百分比:

式3.

允许电流纹波ΔIL为30%,代入已知参数,可以得到:

式4.

最小电感量可由式5计算:

式5.

其中,fSW为开关频率。考虑到20%的容差,可得LMIN = 17µH,此处选择22µH电感。

开关检流电阻(R9)

正常工作时,开关检流电阻两端的电压最大值不应高于250mV,如果检流电阻的电压达到300mV (典型值),转换器将关断。R9上的电压决定了开关周期中导通脉冲的宽度,芯片内部提供了前沿屏蔽电路,可防止开关MOSFET提前关断。R9的计算如式6所示:

式6.

计算得到:R9 = 0.133Ω,这里R9选择0.15Ω。

斜率补偿电容(C13)

众所周知,在峰值电流模式控制中,CCM boost转换器的占空比超过50%时环路将出现不稳定,需要引入适当的斜率补偿,以消除由谐波分量引起的不稳定性。MAX16834具有内部斜坡发生器,用于斜率补偿。在每个开关周期开始时,斜坡电压复位,然后按外部电容C13设定的速率上升,C13由内部的100µA电流源进行充电,斜坡电压与R9两端的电压内部叠加。C13的计算如式7所示:

式7.

其中,VSLOPE为:

式8.

从式7和式8可以得到:C13 = 1.57nF,实际选取1.5nF电容。

LED检流电阻(R5)

利用式9计算R5:

式9.

在此应用中,取VREFI = 1.94V,得到:R5 = 0.56Ω。

滤波电容

输出电容COUT (C7与C8的并联电容)按式10计算:

式10.

其中,ΔVLED为输出电压纹波的最大峰峰值,它取决于最大电流纹波和此电流下LED的动态阻抗。为延长LED使用寿命并保证其色度,LED上的纹波电流应小于其平均电流的5%。本应用中,计算得到COUT为3µF,故电容C7、C8均选用2.2µF/50V。

由式11计算输入电容(C1、C2的并联电容):

式11.


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭