基于VRLA构建光储联合并网发电系统
3 系统控制原理
3.1 DC/DC工作原理
以下对DC/DC的控制分析以其工作在基于Buck原理的降压模式为主,实现对蓄电池组的三阶段充电。
图3a中,由IGBT模块的VT1,VD2及电感、电容等构成Buck电路,采用DSP2808作为控制核心,对电流、电压采样信号进行处理、计算后,生成PWM信号PWM1,控制VT1的通断,调节输出电压和电流,从而实现对蓄电池组的充电。典型的VRLA单体电池为2 V/块,以6节单体电池串联构成的电池模块为例,设计三阶段充电模式,包括恒流充电、恒压充电及涓流充电(浮充电)。
根据系统实际配置容量,确定充电缺省参数,实时监测蓄电池状态,实现充电阶段的自动切换。恒流充电时采用1/4倍率制,针对12 V/100 Ah电池组,充电电流为25PA(P为并联组数);恒压充电过充限压值为14.4S V(S为串联单体电池数),浮充电压为13.65S V。控制程序采用电压、电流闭环控制方式,将给定值与采样反馈值进行比较,通过PI调节器得到相应占空比,与三角载波比较后生成PWM信号,程序可自动选择充电阶段,并将其他充电阶段的PI值置零,控制原理如图4所示。本文引用地址:http://www.amcfsurvey.com/article/175977.htm
当DC/DC装置工作在Boost模式时,从蓄电池组取电,并将直流电压抬升至500 V,可实现稳定逆变器的输入电压,保证逆变并网环节的稳定运行。
3.2 DC/AC控制策略与实现
DC/AC装置作为交直流系统的转换环节,可在交流电网亏电时,将蓄电池的直流电能逆变为交流电并入电网;当蓄电池亏电时,使DC /AC装置工作在整流状态,同样采用恒流、恒压、涓流的三阶段方式进行充电。采用基于电网电压定向的矢量控制策略,控制原理如图5所示。
相角检测环节中,锁相采用过零点检测技术。由于实际的电网电压并非理想的正弦波电压。使得电压检测值中除基波分量外还包含大量的谐波分量,这样就使得基波电压定向出现偏差,从而降低了系统有功、无功的控制性能。可通过软件对采样电压信号进行滤波,而后再检测其过零点,并针对所使用的低通滤波器参数给予相应的相位补偿。对网侧电压、电流实时采样,在电压定向基础上,通过对输出电流的控制,实现并网逆变器输出有功、无功功率的控制。
评论