新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 具有电流检测功能和开尔文连接的电源提升电路

具有电流检测功能和开尔文连接的电源提升电路

作者:时间:2013-07-02来源:网络收藏

本文介绍高电流轨到轨运算AD8397如何将可调电压源的电流提升至最高±750 mA。缓冲电压可以用作电源或基准源。开尔文连接可消除阻性损耗。该技术可提供精确的电压,并允许利用检测电阻测量电流。

本文引用地址:http://www.amcfsurvey.com/article/175009.htm

1.jpg

图1. AD8397用作电源提升电路

图1显示为待测器件(DUT)提供电源的电路。AD8397用于缓冲电源电压,并向DUT提供电源,其闭环增益配置为1。该的负反馈和开环增益使反相输入端与同相输入端的电压相等。如果缓冲电压远高于运算的失调电压,误差则可以忽略不计。DUT负载电流由AD8397提供。

电流检测电阻R2将该电流转换为电压,利用仪表放大器很容易测量该电压。这种检测技术允许利用不同提升电路多次缓冲一个电压,并单独测量每个电流。R2的值不影响放大器的动态特性,但会限制其裕量。图2显示随着电路驱动的电流增大,输出电压的变化情况。本例中,电源电压为15 V,R2为10 Ω,DUT所需电源电压为6 V和9 V。此图显示,对于6 V情况,电路在约650 mA时饱和;对于9 V情况,电路在约500 mA时饱和。

2.jpg

图2. DUT电源电压和AD8397输出电压与输出电流的关系

较小的电阻R2可提高放大器的裕量,但较大的电阻有助于保护电路,防止意外的电流过驱损坏缓冲器。随着电流增大,放大器的输出电压上升,直到输出饱和或者放大器受损。该电阻越大,输出饱和得越快,从而使功耗处于易控水平。放大器正常工作时的功耗也必须予以考虑,AD8397只能短时驱动750 mA电流而不会受损。

缓冲DUT电源电压利用电容C2去耦。此电容与电阻R2一起构成一个反馈极点,这可能会导致电路不稳定。为了解决这一问题,可以提高系统的闭环增益,从而提高相位余量,使环路保持稳定,但可以缓冲的电压幅值将受到输出摆幅的限制。

由R1和C1组成的网络可提高高频时的闭环增益,同时维持低频时的单位增益。R2与R1的比值决定系统的高频闭环增益。增益越大,系统越稳定。电容C和电阻R1设置单位增益变为非单位增益的频率。为了保持稳定,此转折频率应比放大器的交越频率至少低10倍1。采用图1所示的值时,该提升电路在保持单位增益稳定的同时可以驱动最高10 nF的负载。

将反相输入端(检测)和AD8397输出(强制)分别连接至DUT,可以形成开尔文连接,如图1所示。这将强制放大器输出为某一电压,以补偿反馈路径中高电流引起的阻性损耗。检测线路中流过的电流非常小,因此反相输入端会随同相输入端变化。这一技术可以使DUT电源引脚保持在所需的电压值。

AD8397可以提供源电流和吸电流,因此它也可以用来产生DUT的负电源。

3.jpg

图3. AD8397用作基准电压源,其电压为供电电压中间值

对于采用单电源供电的DUT,AD8397也可以用作电压为供电电压中间值的基准电压源,如图3所示。此时,AD8397缓冲电阻分压器所确定的一半电源电压。放大器可以提供源电流和吸电流,同时使中间电源电压保持恒定。为了获得双向电流,AD8397必须采用单电源供电。为了对中间电源电压去耦,需要使用上述补偿技术。开尔文连接和/或电流检测电阻同样可以实现。

电子管相关文章:电子管原理




关键词: 放大器 测试测量

评论


相关推荐

技术专区

关闭