线性高电压稳压器的制作
一、本设计的特点
本文引用地址:http://www.amcfsurvey.com/article/174904.htm●输出电压范围在0~500V之间可调,输出电流最大1A.
●内置加电后输出电压延迟功能(30s)。
●可选用3种调整管选择插件。
电子管6528替代型国产电子管为FU一811(稳压最大电流:600m A)。
电子管EL84/6BQ5或EL86/6CW5替代型国产电子管为6N5P(稳压最大电流:50mA)。
场效应管DN2540(稳压最大电流:1 A)。
电子管放大器性的能取决于可调节和稳定的电源,特别是灵敏的前置放大级,也包括(单端)功率放大器。假定使用很好的DC直流电源,它没有来自信号频率的嗡嗡声,噪音和纹波。但还总是有通过滤波器和平滑电阻引起的来自电源线的纹波和哚音。即使你使用C-L-C的Tr型滤波,也不能保证完全干净。并且当跟随信号频率变化的负载电流流过电源内阻时,欧姆定律告诉我们(电流×电阻)会在电源上引起与信号相关的电压变化。
每个放大器都有一介被称作电源抑制率(PSRR)的性能指标。表示电源通过输出端泻放出的纹波和嗡嗡声的程度。它随着放大器的拓扑结构变化,但总是存在的。基本的单端电路的这个指标表现很差。因此,在高压电源线上加一个低纹波,低噪音和嗡嗡声的稳压电源对于干净的,无失真的声音来说是相当有用的。但传统的高压稳压电源要加上许多电子管。复杂而且消耗功率。也很难获得良好的性能。
本文介绍一种十分简单的新设计,也能够提供十分优良的性能。输出电压是用一个电阻全程可调节的,调节不会影响电路性能。
二、电路原理
本电路的原理可参照图1,其设计思路是:你在这里看到的是一个高电压稳压器,但是少见昂贵的高压设备和元件。就是说,这里只有一个独立的浮动在高压输出端的低压电源。这个低压电源是灯丝加热电源整流后提供。因此相应的误差放大和控制电路可以使用低压元器件。
图1 T-reg概念图
这类串联型稳压电源总是三个元件组成。一个参照电压和一个是将参照电压与输出电压比较的误差放大器。误差放大器输出驱动调整管来保持输出电压稳定。
本电路中。参照电压来源于电阻R3.由浮动的恒流源T1驱动。晶体管T2和T3组成了误差放大器。这是一个差分放大器,是互补结构而不是对称结构,不用两个相同极性的晶体管对称放置而是两个互补的晶体管串接级联,但其工作原理是相同:
参照电压由T3输入,而输出电压在T2.如果输出电压开始降落到设置的电压值之下,T2开始难以导通,则跨接在R5两端的对于通过调整管(电子管)的驱动电压将会增加。这将转而提升了输出电压。
直到其再次恢复到设置电压值。当Vout变得太高的时候,调整管的驱动电压将会减少,从而向下降低输出电压Vout,直到恢复到原来的设置电压。由于除了差2个Vb-e电压差之外。Vout基本等于Vref。
在原理上你可以通过选择R3,设置输出电压为你所希望的任何值。相对于大多数传统设置来说这是个极大的优点。传统上,你得到的参照电压是Vout的一部分,在馈送它到误差放大器之前。从Vout分压一部分。如果你很想改变Vout,就需要改变这个分压比率。其缺点是。这也会改变控制环路的增益。
反过来。这又意味着输出电压的性能和稳定性改变。
如这里所作的,通过使参照电压等于输出电压。使电路的稳定性和性能不会随着输出电压而改变。
误差放大器电路相对于高性能运算放大器来说是很简单的。基于高增益电路的运算放大器性能与其本身的稳定性和补偿有关。事实上,如图2和图3所示,电路已经有相当高的性能。高性能的因素之一是误差放大器的负载电阻是从Vdrive到地的电阻R5.使用电子管做通过设备时。这个电阻是栅极电阻,大约为500kΩ(取决于电子管lo因此,即使在T2的基极和发射极之间很小的误差电压,都会引起相当大的矫正电流通过R5.进而在Vdrive上产生相当大的矫正电压。尽管电路简单,但回路增益相当大。
图2 T-reg阻抗曲线图
图3 T-reg的输出嗡嗡声和噪声曲线图
三、实际电路
这是一个电子管稳压器。这里有几件其他的事需要注意一是加电时电子管阴阳极电压的延迟施加,不仅仅对调整管也包括对放大器。整个电路(不包括调整管)都显示在图4中。ICl是一个标准的555定时器(CMOS)。在电源接通之后一段时间,它拉低了IC3中的LED.用R8和C3设置的延迟时间大约有30秒。一旦IC3中的这个LED导通,光电可控硅激活。并使晶闸管THl接通。将整流后的高电压施加到通过电子管上。
LM317相关文章:LM317中文资料
电子管相关文章:电子管原理
评论