可调光荧光灯交流电子镇流器设计
我们先不考虑调光器接入的情况。由于整流二极管具有单向导电性,只有正向偏置时才会导通。只有在AC输入电压峰值附近,AC电压才会高于储能电容C1上的电压,二极管才会有电流通过。因此,AC输入电流不再呈正弦形状,而是高幅度的尖峰脉冲,如图5所示。在10ms的半周期中,二极管导通时间仅约3ms,对应的导通角仅约60°。
图5 不考虑调光器时AC输入电压、输入电流和整流滤波输出电压
当将白炽灯使用的调光器连接在电子镇流器输入端(见图4)时,Triac只有在AC输入电压大于平滑电容器C1上的电压时才会被触发导通。这样虽然在一定程度上也能对荧光灯进行调光,但会使灯光闪烁,不能实用。
2)Triac调光解决方案
为了实现采用白炽灯可控硅调光器对电子镇流器的平滑调光,消除灯闪烁,解决方案如图6所示。
图6 Triac调光解决方案框图
除了对灯电流感测反馈之外,还要对调光器之后的AC输入电压进行感测,并将感测信号输入到L6574的运算放大器的同相端,作为参考控制电压。电压检测电路非常简单,可利用一个电阻分压器采样,然后加一个整流滤波网络。
对调光器之后的电压进行检测,实际上是对调光电位器的旋钮位置(亦即Triac的导通角)进行控制。
为了实现平滑调光,必须对镇流器电路附加一个单级PFC电路。在图6中,C2、C3、VD5、VD6、L2、C3和功率MOSFETVT1、VT2则为单级PFC电路。
为了说明单级功率因数校正(PFC)电路的工作原理,我们假定开关的死区时间(即VT1关断后到VT2导通之间的时间间隔)可以忽略;VT1与VT2的占空比为50%;在一个开关周期内,电容C2和C3上的电压是恒定的。图7给出了一个开关周期中通过电感L2的电流iL2的波形。
图7 单个开关周期电感L2电流
iL2可以分为4个阶段。
t0~t1:该时段L2充电。在t=t0时,VT1已开通,VT2断开,C2通过VD5、VT1给L2充电,iL2线性增大,在t1时刻,VT1关断,VT2开通,iL2达到正向峰值。
t1
t2
t3
事实上,单级PFC电路是由两个升压电路构成的,iL2双向工作,并且在临界不连续模式操作。加入单级PFC电路后,AC输入电流可连续通过整流器中的二极管,Triac几乎可以在0°~180°的任意时刻上被触发导通,直到AC正弦电压接近零时才被关断,这样就扩大了调光范围。
对于图6所示的电路,如果负载是20W的节能灯,并且AC输入电压范围为180~260VAC,最低开关频率是45kHz,L2=L1=2.8mH,C1=10μF,C4=0.1μF,C5=5.6nF,VT1和VT2为STD4NK50型MOSFET,在220V/50Hz下的调光特性如图8所示。
图8 220Vac、50Hz条件下的调光特性
其中,Ton为Triac在AC线路半周期(10ms)内的导通时间,Plamp是实测灯功率。从图8可以看到,随着Triac导通时间的增加,灯功率相应增加,从而使灯亮度增加。反之,Ton越短,灯功率则越小,灯光也就越暗。
图9为AC输入电压和电流波形。由该图可以看出,虽然AC电流在其峰值附近出现了尖峰,但Triac在任意点上都可以导通,在半周期中的整流二极管导通几乎从0°到180°,而未采用单级PFC电路时的导通角仅为60°(见图5),线路功率因数达到0.9以上。当然,加入单级PFC电路的目的最主要的还是使Triac在0°~180°之间的任意点都可以被触发导通。
图9 输入电压、电流波形
4 结语
L6574是一种可调光荧光灯交流电子镇流器控制器。基于L6574的镇流器,附加一个单级PFC电路,再通过L6574中的运算放大器对输入电压和灯平均电流进行感测,借助于调频和调压双重作用,可以使用传统白炽灯Traic调光器,实现从20%~100%调光,使其在节能方面发挥很大的优势。
电子镇流器相关文章:电子镇流器工作原理
评论