新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于STC12C5616AD单片机的操作指示器设计

基于STC12C5616AD单片机的操作指示器设计

作者:时间:2012-10-12来源:网络收藏

火箭炮能否迅速展开火力打击是衡量其武器系统作战性能的重要因素。火箭炮在对目标实施准确打击之前,必须对其进行精确的调平。目前,部队在对火箭炮车体平台进行调平时,调平过程复杂,协调要求高。调平过程通常需要三个人配合完成,一人站在梯子上观察放于回转盘水准仪检查座上的水准仪,两人位于车下手动两个千斤顶,一般要经过多次调试才能完全使车体纵横向水平。检查调整完后,若车体水平发生变化,又要重复以上调平过程。这种调平方式耗时长,调平过程繁琐、费时费力,且不便于指挥、协调困难,精度也得不到保证。因此,部队亟需一种能动态显示车体姿态,并指示。本文一种能够对车体平台的倾斜状态进行自动显示的操作

本文引用地址:http://www.amcfsurvey.com/article/170791.htm

操作的组成及工作原理

操作指示器结构组成如图1所示,由主控制器、无线数传模块和液晶显示屏等组成。其工作原理:操作指示器通过无线数传模块接收到从倾斜检测仪输出的纵向和横向倾斜角度数据,并对数据进行处理和运算,然后通过液晶屏幕显示出车体的纵横向倾斜角度,并根据数据的运算结果,指示出左右两个千斤顶需要进一步调整的方向。倾斜检测仪放置于回转盘水准仪检查座上,两个操作指示器分别吸附于两个千斤顶旁或戴在操作人员手臂上,两名操作手观察各自的指示器即可调平车体。液晶显示采用的是COG封装的12864液晶屏,采用串行SPI总线驱动,这种液晶屏幕驱动芯片直接集成到玻璃基板上,体积小、省电,背光电路灵活。

图1 操作指示器结构组成图

主控制器的选型及电路

主控制器的选型

操作指示器的控制核心选用。该芯片具有如下特点:

(1)高速:1个时钟/机器周期,增强型8051内核,平均指令运算速度比标准8051快8~12倍。

(2)宽电压:5.5V~3.3V。

(3)增加第二复位功能脚(高可靠复位,可调整复位门槛电压,频率12MHz时,无需此功能)。

(4)增加外部掉电检测电路,可在掉电时,及时将数据保存进EEPROM,正常工作时无需EEP。

(5)低功耗设计:掉电模式(可由外部中断唤醒),可支持下降沿/上升沿和远程唤醒。

(6)低功耗设计:空闲模式(可由任意一个中断唤醒);掉电模式(可由外部中断唤醒),可支持下降沿/上升沿和远程唤醒。

(7)工作频率:0~35MHz,相当于普通8051:0~420MHz。

(8)时钟:外部晶体或内部RC振荡器可选,在ISP下载编程用户程序时设置。

(9)8/16/20/32/40/48/52/56/60/62K字节片内Flash程序存储器,擦写次数10万次以上。

(10)1280字节片内RAM数据存储器

(11)ISP/IAP,在系统可编程/在应用可编程,无需编程器/仿真器。

(12)8通道,10位高速ADC,速度可达25万次/秒,2路PWM还可当2路D/A使用。

(13)2通道捕获/比较单元(PWM/PCA/CCP),也可用来再实现2个定时器或2个外部中断(支持上升沿/下降沿中断)。

(14)4个16位定时器,兼容普通8051的定时器T0/T1,2路PCA实现2个定时器。

(15)可编程时钟输出功能,T0在P3.4输出时钟,T1在P3.5输出时钟,BRT在P1.0输出时钟。

(16)硬件看门狗(WDT).

(17)高速SPI串行通信端口。

(18)全双工异步串行(UART),兼容普通8051的串口。

(19)先进的指令集结构,兼容普通8051指令集,有硬件乘法/除法指令。

(20)通用I/O口(36/40/44个),复位后为:准双向口/弱上拉(普通8051传统I/O口)可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏每个I/O口驱动能力均可达到20mA,但整个芯片最大不超过100mA。

主控制器电路设计

操作指示器的主控制器采用的芯片是,具备一个串口UART0和一个SPI总线接口,采用的3.3V供电,具有低功耗,指令执行效率高的特点。由于ZigBee无线数传模块和LCM屏都采用TTL电平驱动。因此,控制器通过UART0直接接到无线数传模块上;通过SPI总线相关端口,直接接到LCM模块的数据传输端。具体的电路原理如图2所示。

图2 操作指示器主控制器电路原理图

显示屏的简介及其接口电路设计

显示屏的简介

实际上,可将一般单纯的TN型与TFT型液晶显示器面板视为仅仅是一个经由组合上下两片玻璃后并灌注进液晶的一个简单结构品。在应用时,必须施加驱动电压到LCD的接口端上,这样才可以通过电能所产生的电场将液晶分子按照要求分布,由此产生显示画面。通常,把驱动LCD的技术都集成在一个IC芯片(Driver IC)上,由其产生驱动电压波形。简单地讲,LCM(Liquid Crystal Module)就是把此Driver IC与LCD面板连接起来,可以完成LCD显示功能的模块。随着商品的不断多样化,各种数码产品对液晶模块(LCM)的形式、性能要求也不断地丰富、更新,不断地加入其他组成部件:柔性印刷电路板、背光模组、印刷电路板等,使LCM能够满足多种产品的需要。目前,LCM的工艺已经发展为体积小、薄形化技术。按照Driver IC的封装形式分为COG工艺、TAB工艺和COF工艺。在此主要介绍COG工艺。

COG(Chip On Glass)工艺:使用的Driver IC为COG IC,该技术通过把Driver IC直接安装在液晶面板玻璃底板上,从液晶面板外挂的印刷电路板上去掉液晶驱动器IC,减小了电路面积,且易于大批量生产,适用于消费类电子产品所用的LCD,如:手机、PDA等便携式电子产品。在COG工艺中,采用ACF将IC与LCD连接起来,使得COG IC芯片直接连接在玻璃上。关键点是IC的BUMP对准LCD的ITO线路,不能偏移,为了避免这一点,在LCD面板上设计有COG工艺对位标记,在COG IC芯片上也要设计相应的对位标记。在进行压合前,要找到二者的对位标记,对准后进行压合,从而使COG IC与LCD上的ITO线路导通。

TAB(Tape Automated Bonding)工艺:将封装形式为TCP(Tape Carrier Package, 带载封装)的Driver IC用各向异性导电膜依次固定在LCD和PCB上。这种安装方式可减小LCM的重量、体积,安装方便,可靠性较好,是比较成熟的工艺技术。

COF(Chip On Film)工艺:芯片被直接安装在柔性PCB上。这种连接方式的集成度较高,外围元件可以与IC一起安装在柔性PCB上,是一种新兴技术。

目前LCD模块的各种工艺技术中,能够做到较小、较薄体积的,应属COG及COF工艺。本文指示器中采用的就是COG封装形式的12864屏。

COG12864接口电路设计

操作指示器的液晶显示屏,采用的是COG封装形式的12864屏,最大尺寸为43mm×40mm,加上背板电路后的厚度也仅为5mm,功耗在不带背光的情况下只有10mW,在带有背光的情况下也不大于100mW。工作电压仅为3.3V,内置升压电路,外部只要配上相应的电容即可。其电路原理如图3所示。

图3 COG12864接口电路原理图


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭