智能LED照明(带散热监控功能)控制
散热管理是新型LED灯中最困难、要求最严格且成本最高的设计部分。如果不进行充分的散热管理,将会造成照明失效或火灾等灾难性后果。如果不进行有效的散热管理,则会带来需要频繁更换失效的LED灯或者导致建筑物火灾等灾难性后果。使用智能LED灯控制功能来监控LED灯的温度是较为简单的散热管理办法,同时由于LED灯能在温度升高情况下降低功率,因此安全性也将会得到大幅提升。
本文引用地址:http://www.amcfsurvey.com/article/168811.htmNTC散热管理
NTC电路的基本原理是通过监控LED灯的温度来提升LED灯的安全性并降低设计复杂度。当温度升高时,控制器减少流明并借以将LED保持在安全水平之内。换言之,当温度升高时,减少流明,反之,当温度下降时,则增加流明。
我们可通过检测NTC上的电压来检测LED灯的温度变化。检测到的电压与NTC的温度有直接关系,而NTC的电阻会随NTC及其周边电路温度的升高而下降。使用NTC确定温度有两种基本方法。
方法一:在系统强制实施已知电压的分压器电路中使用NTC,并随后测量NTC节点上的电压。NTC温度升高时,电阻减小。电阻减小将导致分压器比的变化。NTC节点的电压也会随温度升高而下降。
方法二、强制已知电流通过NTC,并测量NTC上的电压。NTC温度升高时,电阻减小。根据欧姆定律,电阻减小将改变NTC节点上的电压。如电阻减小而电流保持不变,NTC节点上的电压也会下降。
就改进操作、提高安全性而言,这两种监控LED灯温度的方法实施起来都很简单直接。图1是使用LED作为升温源头的这两种方法的原理图。
图1:使用NTC确定温度的两种基本方法。
温度过高还是LED故障?
LED灯的流明输出下降时,了解是否因过高的温度环境还是因为LED出了故障而导致LED输出下降至关重要。我们可用显示流明下降的指示器来确定下降原因。
图2所示系统中的流明下降是通过低功耗的红色LED指示的。当系统处于最大流明输出时,红色LED关闭;当LED灯温度升高时,流明输出则会下降,而流明输出下降时,红色LED即会开启。随着流明输出不断下降,红色LED的强度会相应增加。当流明输出下降到其最低强度时,红色LED将会完全开启。
图2
当流明输出处于最低强度而LED灯的温度仍然较高时,红色LED指示灯还可作为预警严重问题的报警器。在报警模式下,红色LED会在白色LED全部关闭的情况下不断闪烁。
图3的方框图显示了带有NTC和警报指示器的普通LED驱动器和LED控制器。普通LED灯包含的一个LED驱动器经配置后可通过LED提供一个设置电流。驱动器无法根据温度降低流明。驱动器提供的温度监控功能只能用于自身保护,并在温度极高的情况下完全关闭。
图3:带有NTC和警报指示器的普通LED驱动器和LED控制器
LED控制器具有普通LED驱动器的全部控制功能,并能增强温度监控、通信和调光控制等其他功能的智能水平。方框图中蓝色部分是LED控制器的基本模块和组件。以红色显示的组件不是基本操作所必需的,但显示用于本文所述的NTC和报警功能。
普通LED添加NTC后,就能以可控顺序在温度达到预设限度时关闭LED灯。LED控制器右侧的两个红色组件(电阻和NTC)根据NTC操作部分所介绍的方法一进行配置。控制器向电阻元素提供精确的电压。NTC节点处的电压由控制器测量,以便转换为相应的系统温度。
报警机制可让LED灯显示温度升高并达到必须关闭以确保安全的程度。LED控制器左侧的两个红色组件(电阻和LED)是基本的指示灯LED配置。LED的亮度由PWM(脉冲宽度调制)信号控制。LED在PWM占空比提高情况下会增加亮度。
上述智能LED灯以另外一个LED指示灯的方式显示报警信息。LED报警只是智能LED能够采用的众多通信接口之一。此外还可采用PLC(电力线通信)、DMX(数字多路复用)和DALI(数字可寻址照明接口)等接口。
评论