一种面向多媒体SOC的微状态低功耗设计方法
当前,移动多媒体应用在消费类电子中正变得越来越重要,然而由于受电池寿命的限制,其功耗问题也越来越突出。如何找到能量效率和服务质量之间的平衡点,已成为当前SOC系统设计中的一个热点问题。
在SOC设计中,设计者大量重用现有经过验证的成熟IP核,对于设计一个复杂系统并保证其上市时间的意义重大。当前,很多专业的IP供应商提供了大量可供设计者选用的IP核,设计者们需要根据应用需求,选出合适的IP核,并确定每种IP核对应的配置。对于移动多媒体SOC的设计,为了实现系统级的优化,SOC系统设计者的核心目标之一即是在保证多媒体服务质量的同时使得系统代价(芯片面积和功耗)最小化。
本文对多媒体中视频应用的编码特征以及负载特性进行分析,从系统设计及优化的层次,将功率管理模块嵌入至多媒体SOC系统中。同时,将系统的运行状态按不同的IP配置情况组合成一系列微状态,在前人所做工作的基础上,利用F-ARIMA模型预测负载,同时利用多媒体应用中衡量服务质量的重要指标――最后期限缺失率(deadline miss rate,DMR)作为反馈控制信息,两者相结合的方式,实时调整多媒体SOC系统的运行状态,实现移动多媒体SOC设计过程中的功耗优化。
1 常用视频编码标准以及负载分析
在所有的视频压缩算法中,MPEG-x和H.26y标准正逐渐占据主导地位。这些视频压缩算法,带来更高传输效率的同时,也带来了终端更大的运算量。根据多媒体应用的特征及其编码标准,不难发现,并非所有多媒体视频帧所需要的解码时间都是一致的。以MPEG标准压缩的帧为例,其总共由三种类型的帧构成,分别为:内部帧(intra),双向帧(bidirectional)和可预测帧(predictive)。这三种不同类型的帧,具有不同的解码复杂度。即使是同一种类型的帧内部,其解码复杂度也有较大差异。显而易见,将所有的解码任务的实时性约束都设置为同一个标准将会导致系统始终工作于最差分支下,从而付出不必要的功耗开销。
目前,在多媒体SOC设计过程中,针对其重要的视频应用的负载特性进行功耗优化是一个非常热点的研究问题。常见的低功耗设计技巧主要有动态电压调整(dynamic voltage scale,DVS)和动态功率管理(dynamic power management,DPM)技术。在DVS技术中,在保证服务质量的同时,让不同计算量的任务运行在不同的工作电压和频率;而DPM技术则在运行过程中,动态关闭系统某些空闲模块。在众多针对多媒体应用进行低功耗设计的研究中,其主要思路可分为两类。一种是将多媒体应用的负载当作一个随机过程,然后采用马尔可夫或者半马尔可夫模型预测负载,再根据预测结果调整当前系统运行状态。如在文献[4]中,提出了一种基于回归方程的方式,通过系统当前“工作”和“空闲”时间预测即将到来的“工作”和“空闲”时间。文献[5]中分别利用离散马尔可夫时间序列和连续马尔可夫序列算法预测系统负载。以上这些方式都有效地降低了系统功耗开销,但是其最大不足之处在于多媒体应用的编码方式和内容多种多样,无法找到一种合适的模型来适应所有多媒体应用。另外一方面,也有研究利用实时反馈控制的方式,来调整当前系统运行状态的方式来降低多媒体系统的功耗。如文献[6],作者提出了一种根据显示缓存占用率作为反馈控制信息,来降低功耗的方法。
目前,使用最广泛的视频压缩标准为MPEG-x(x=1,2,4)系列和H.26y,(y=1,2,3,4)系列。一般地,视频编码器将连续的图像压缩成I,B,P三种不同的帧类型。I帧的压缩率大于P帧,P帧的压缩率大于B帧。连续的两个I帧之间的所有帧(不包括后一个I帧)构成一个图像分组(GOP)。一个GOP由I帧帧间间隔N,以及P帧帧间间隔M两个参数决定。与此对应,对于解码器的解码负载而言则有I>P>B这个规律。
即便采用同一种编码格式,面向不同的应用场景,多媒体应用的负载情况也有很大区别,下面以H.264.视频压缩标准为例,给出一些常见格式的视频应用的负载情况,见表1。
根据表1的实验结果,图l将更形象地描述解码器的工作过程。从图1中可以看出,解码器仅有两种状态,即高速工作状态和空闲状态。由于解码器运行状态下的能量消耗计算方式为
光电开关相关文章:光电开关原理
评论