关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 永磁同步电动机控制策略综述

永磁同步电动机控制策略综述

作者:时间:2009-02-04来源:网络收藏
1 引言
近年来,随着电力电子技术、微电子技术、新型电机理论和稀土材料的快速发展,得以迅速的推广应用。具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁电机的进行,并介绍了永磁同步系统的各种控制发展方向。


2 永磁同步电动机的数学模型
当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组。从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数:①忽略电动机的铁心饱和;②不计电机中的涡流和磁滞损耗;③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。
在分析同步电动机的数学模型时,常采用两相同步旋转(d,q)坐标系和两相静止(α,β)坐标系。图1给出永磁同步电动机在(d,q)旋转坐标系下的数学模型。
(1)定子电压方程为:

本文引用地址:http://www.amcfsurvey.com/article/163967.htm


式中:r为定子绕组电阻;p为微分算子,p=d/dt;id,iq为定子电流;ud,uq为定子电压;ψd,ψq分别为磁链在d,q轴上的分量;ωf为转子角速度(ω=ωfnp);np为电动机极对数。
(2)定子磁链方程为:


式中:ψf为转子磁链。

(3)电磁转矩为:

式中:J为电机的转动惯量。
若电动机为隐极电动机,则Ld=Lq,选取id,iq及电动机机械角速度ω为状态变量,由此可得永磁同步电动机的状态方程式为:


由式(7)可见,三相永磁同步电动机是一个多变量系统,而且id,iq,ω之间存在非线性耦合关系,要想实现对三相永磁同步电机的高性能控制,是一个颇具挑战性的课题。

3 永磁同步电动机的控制
任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制等方案。
3.1 恒压频比控制
恒压频比控制是一种开环控制。它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出电压uout进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁同步电动机的动态数学模型为非线性、多变量,它含有ω与id或iq的乘积项,因此要得到精确的动态控制性能,必须对ω和id,iq解耦。近年来,研究各种非线性控制器用于解决永磁同步电动机的非线性特性。
3.2 矢量控制
高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案就倍受青睐。因此,对其进行深入研究。
矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁场定向坐标通过矢量变换,将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,然后分别调节,以获得像直流电动机一样良好的动态特性。因此矢量控制的关键在于对定子电流幅值和空间位置(频率和相位)的控制。矢量控制的目的是改善转矩控制性能,最终的实施是对id,iq的控制。由于定子侧的物理量都是交流量,其空间矢量在空间以同步转速旋转,因此调节、控制和计算都不方便。需借助复杂的坐标变换进行矢量控制,而且对电动机参数的依赖性很大,难以保证完全解耦,使控制效果大打折扣。

电动机相关文章:电动机工作原理设计



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭