关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 指纹图像对比度模糊增强算法

指纹图像对比度模糊增强算法

作者:时间:2011-01-13来源:网络收藏

摘 要:指纹图像过程常会造成对比度不强等非线性失真,基于模糊逻辑的处理方法常用于改善指纹图像质量。研究了模糊特征平面增强算法和基于广义模糊算子的图像增强算法,将两种算法应用于指纹图像对比度增强,并对增强结果进行比较分析。实验结果表明,采用这2 种方法均可以在一定程度上提高指纹图像低灰度区域和高灰度区域之间的对比度,从而提高图像的质量,使增强后的指纹图像结构更清晰。

引 言

指纹识别是指指尖表面纹路的脊谷分布模式识别,这种脊谷分布模式是由皮肤表面细胞死亡、角化及其在皮肤表面积累形成的。人的指纹特征是与生俱来的,在胎儿时期就已经决定了。人类使用指纹作为身份识别的手段已经有很长历史,使用指纹识别身份的合法性也己得到广泛的认可。自动指纹识别系统通过比对指纹脊线和谷线结构以及有关特征,如纹线的端点和分歧点等来实现个人身份认证。然而,要从原始指纹图像上准确地提取特征信息,这是十分困难的,在很大程度上特征提取的精确性依赖于图像质量。因此,在指纹特征提取和匹配之前有必要对指纹图像进行增强处理。指纹图像增强就是对指纹图像采用一定算法进行处理,使其纹理结构清晰化,尽量突出和保留固有的指纹特征信息,并消除噪声,避免产生虚假特征。其目的是保持特征信息提取的准确性和可靠性,在自动指纹识别系统中具有十分重要的作用和地位。

由于曝光不足等因素的影响,图像的亮度分布会发生非线性失真,常常表现为对比度不强,图像的整体感觉较暗等。目前,已经有很多基于灰度直方图的方法来增强对比度,从而改善图像的质量 。

近年来,人们对基于模糊的图像处理技术进行了研究。模糊集合理论已能够成功地应用于图像处理领域,并表现出优于传统方法的处理效果。根本原因在于:图像所具有的不确定性往往是因模糊性引起的。图像增强的模糊方法,有些类似于空域处理方法,它是在图像的模糊特征域上修改像素的 。基于模糊的图像处理技术,是一种值得重视的研究方向,应用模糊方法往往能取得优于传统方法的处理效果。很多时候基于模糊的增强图像对比度方法能够更好地增强图像的对比度,尤其是对于对比度很差,一般的增强算法无法对其增强的图像,它的优势突显。

本文结合模糊逻辑技术,研究了基于模糊特征平面的增强算法和基于GFO 算子(广义模糊算子) 的图像增强算法,并将其应用于指纹图像对比度的增强。

1  模糊特征平面增强算法

1. 1  模糊特征平面

从模糊集的概念来看,一幅具有L 个灰度级的M ×N 元图像, 可以看作为一个模糊集, 集内的每一个元素具有相对于某个特定灰度级的隶属函数。该模糊集称为图像等效模糊集,亦即图像的模糊特征平面, 对应的模糊矩阵记为F , 有:


式中:矩阵的元素μmn / Xmn 表示图像像素( m , n) 的灰度级Xmn 相对于某个特定的灰度级l′的隶属度,通常l′取最大灰度级K - 1 。

1. 2  算法实现

首先采用图像分割中的阈值选取方法(本文中采用Ot su 方法) 来确定阈值参数X T ,显然X T 将整个图像的直方图分为2 个部分。低灰度部分和高灰度部分; 对于具有典型双峰分布的直方图来说,它们分别对应目标和背景这两部分。然后定义新的隶属函数形式, 再进行模糊增强运算,在低灰度区域进行衰减运算, 从而使属于该区域像素的灰度值更低,而在高灰度区域则进行增强运算,从而使属于该区域像素的灰度值更高。因而,经过模糊增强后直方图上阈值X T 两侧的灰度对比增强,图像区域之间的层次将更加清楚。整个算法过程如下:

(1) 首先根据Ot su 选取阈值的方法确定阈值参数XT 。显然对于双峰分布的直方图阈值参数XT 将位于双峰之间的谷底附近。然后定义新的隶属度函数为:




上一页 1 2 3 下一页

关键词: 采集

评论


相关推荐

技术专区

关闭