先进投射电容式触控产品设计关键
CDC测量的基础方法也对电容式触控屏幕的工作方式造成重要的影响。有多种技术可用于信号撷取,例如弛张式振荡器
振荡器
振荡器是收发设备的基础电路,它的作用是产生一定频率的交流信号,是一种能量转换装置——将直流电能转换为具有一定频率的交流电能。 [全文]
(Relaxation Oscillator)、CSA、Sigma Delta转换器
转换器
转换器从原理上可分为协议转换器、接口转换器两大类。从应用上又可以分光纤转换器、光电转换器、视频转换器等等。例如视频转换器就是一种连接电脑和电视的设备,它可以把电脑上的内容转换并显示在电视机上,让人们可以在电视上学电脑,上网,玩游戏,做商业演示,看股票等等。 [全文]
等,并各有其优势和缺陷。从互电容式测量的角度来看,它们都有一个严重限制效用的主要缺点:在测量周期中,矩阵里芯片和互联之间的配线仍然对触碰(热点)很敏感。因为传感器
传感器
凡是利用一定的物性(物理、化学、生物)法则、定理、定律、效应等把物理量或化学量转变成便于利用的电信号的器件。传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 [全文]
的边缘配线会影响计算位置的信号,这种情形将导致测量中的位置错误,对测量极为不利。此外,它还会使从传感器到驱动器芯片的布线连接几乎只限于几厘米之内。上述问题中有些可以通过小心设计得到部分解决,但这也同时会对整体性能构成严重影响。
以爱特梅尔(Atmel)的maXTouch为例,即采用电荷转移技术来进行CDC测量,能够在电荷撷取过程中有效地保持接收线路零电势,因此只须在主要传感器区域中目标点上的发射电极X和接收电极Y之间转移电荷。此外,还可把触控屏幕附近乃至触控屏幕表面上的局部湿气或其它潜在导电材料的影响降至最低。
总括来说,以电极数组中互电容式测量为基础的触控屏幕解决方案不足以实现可靠的解决方案,而必须结合采用了电荷转移技术的稳健CDC,才是迄今最好的选择。
电极正交网络为传感器设计关键
触控屏幕中的传感器由透明基板材料(一般是PET或玻璃)上的一层或多层图样化透明导体构成,传感器位于显示板之上。为了建构能够通过玻璃或塑料前面板识别一个或多个手指触碰的传感器,必须精心设计电极正交网络(图3)。
图3 典型的传感器图样
图样化导体(电极)一般是由名为氧化铟锡(Indium Tin Oxide, ITO)的高度透明材料经过图样蚀刻制成。这种材料具有良好的光学透明度,同时仍保持较低的奥姆电阻率。低电阻率十分重要,因为这样一来,就有可能对数以10个皮法级(picofarad,10-12法拉)背景电容上出现的数以10个毫微微法拉级(femtofarad,10-15法拉)的微小变化进行快速测量。如业者所发表的QMatrix系采用电荷转移技术,它具有一项基本特性,即可以采用具有良好光学性质的常用ITO来制作真正的矩阵传感器,这里对触碰敏感的唯一区域是行、列电极互相耦合的紧邻地带。
这种局部耦合意味着行、列电极的所有其它区域大部分都是对触碰不灵敏的。没有这种特性,就不可能实现真正的多点触控触控屏幕,而只可能通过折衷妥协来满足部分要求。其它CDC技术都试图仿效真正的矩阵,不过这需要限制性更强的ITO材料:其必须有更低的电阻率和更出色的光学特性。这种更低的电阻率可降低行、列交叉点上的电压降,减低其固有触碰灵敏度。不过,由于没有采用电荷转移技术,它们仍然对触碰具有一定的灵敏性,但这也存在一种折衷妥协,就是较差的多点触控性能,并在传感器边缘附近产生明显不良影响。
PET是最常用的两种基板材料之一,它在成本上比玻璃稍具优势,但一般需要两个分离层来实现正交网格。另一方面,玻璃虽然贵一点,却允许单层设计,可采用微型交叉结构来桥接共平面两层结构中的图样交叉点。玻璃传感器的机械稳定性也比PET好得多,因此适合于沉积非常薄的金属线,其宽度仅为数十微米。
PET技术虽然在这方面进步迅速,但一般仍使用数百微米宽的丝网印刷迹线。而整体目标是尽量减小传感器边缘配线尺寸,因为对小型可携式设备而言空间弥足珍贵。
提高电极密度 实现电容式触控笔应用
传感器设计的下一个考虑事项是终端应用所需的分辨率。利用内插法(Interpolation),可以相当准确地确定单触控点的中心位置所在。不过,当须要分别识别几个相邻的触控点时,就有困难了,这需要很高的电极密度。
评论