温度测试系统总体设计方案分析
随着科技的发展和现代化工业生产的需要,温度的测量和控制越来越受到人们的关注,对温度的准确采集及合理调控,将会对温度要求较高的工作环境起到至关重要的作用。尤其是在炸药爆破等恶劣环境条件下对爆炸场温度的分布规律的研究有助于为炸药和相关弹药的威力考核及分析提供依据。文中利用CPLD作为主控芯片,使用钨铼热电偶温度传感器并配以高效低功耗的测试电路对爆炸场温度进行动态测试。
本文引用地址:http://www.amcfsurvey.com/article/160453.htm1.1 动态存储测试
所谓存储测试技术,是指在对被测对象无影响或影响在允许范围的条件下,在被测体内置入微型存储测试仪器,现场实时完成信息快速采集与存储,事后回收记录仪,由计算机处理和再现被测信息的一种动态测试技术。
本次设计的温度测试系统,主要是利用CPLD来实现。温度传感器将外界温度信号转换为微弱的电压信号,通过模拟电路部分将输入信号进行放大和滤波,再经过A/D转化电路把模拟信号转换为数字信号,然后经过FIFO存入存储器,计算机通过接口电路对数据进行读取。其中,A/D转换器、FIFO、存储器和电源管理模块都是由CPLD控制。
2 关键技术
2.1 主控芯片CPLD的选择
在本次设计中使用Xilinx公司生产的XCR3128作为温度测试系统的主控CPLD芯片。XCR3128有100个引脚,其中有76个I/O引脚,4个信号接口,4个全局时钟,7个VCC,8个GND,1个PORT_EN;共包含128个宏单元,VCC为3.6 V,电流限制为200mA。XCR3128封装小,功耗低,充分满足了实际需要。
在本次设计中,控制部分主要由CPLD控制电路时序和工作模式的产生。控制功能图如图2所示,主要功能有:
1)电源管理及控制模块:该模块主要实现测试系统的电源管理及全局时钟控制,从而达到降低功耗和控制各信号初态的目的。
2)时钟分频模块:该模块主要实现对从晶体振荡器输出到CPLD的时钟进行分频,从而得到A/D转换器、存储器和FIFO需要的时序。
3)编程触发比较模块:该模块主要实现触发温度数字电平的编程,通过移位寄存器实现;数字比较部分是把A/D转换结果和所编温度数字电平值比较判断触发与否。
4)FIFO及存储器地址模块:该模块主要实现生成FIFO和存储器需要的地址,FIFO和存储器的数据读写。
5)A/D时序产生模块:该模块主要实现A/D转换器的CONVST/和读信号的时序生成。
6)读数模块:该模块主要实现读数接口的逻辑连接控制,接收计算机发送的脉冲信号,以完成数据传输的目的。
2.2 温度传感器
在爆炸场等高温、高压、高冲击的恶劣环境下采集瞬时温度的动态变化对温度传感器要求很高,因此选用了美国NANMAC公司的E12钨铼侵蚀热电偶。该热电偶瞬态温度响应时间仅为几百微妙,温度范围高达2 315℃,耐压程度高达69 MPa,完全能够满足爆炸场温度测试的需要。
热电偶是利用导体或半导体材料的热电效应将温度的变化转换为电动势的变化,热电偶回路中产生的电动势差为:
NA、NB为材料A、B的电子密度;σA、σB为导体A、B的汤姆逊系数,K为波尔兹曼常数。
由于导体汤姆逊效应引起的电动势差相比较小,常可忽略,因此当热电偶的两种材料的特性为已知时,一端温度固定,则待测温度T是电动势的单值函数。为了使E12钨铼热电偶冷端温度固定在0℃,本次设计采用了补偿电桥法补偿冷端的温度变化。
评论