高频脉冲交流环节逆变器电路拓扑族及其双极性移相控制策略研究
提出并深入研究了高频脉冲交流环节逆变器电路拓扑族及其双极性移相控制策略。借助周波变换器换流重叠和输出滤波电感电流极性选择,该双极性移相控制策略实现了变压器漏感能量和滤波电感电流的自然换流,解决了这类逆变器固有的电压过冲和换流重叠期间周波变换器的环流现象,实现了逆变桥功率器件的零电压开关和周波变换器功率器件的零电流开关。仿真与原理试验结果均证实了这种双极性移相控制策略的可行性和理论分析的正确性。
本文引用地址:http://www.amcfsurvey.com/article/160277.htm关键词:高频脉冲交流环节;双极性移相控制;零电压零电流开关;周波变换器;换流重叠
0 引言
传统的逆变技术虽然成熟可靠、应用广泛,但存在体积大且笨重、音频噪音大、系统动态特性差等缺点[1]。用高频变压器替代传统逆变器中的工频变压器,克服了传统逆变器的缺点,显著提高了逆变器的特性。高频脉冲交流环节逆变器[1][2]具有双向功率流、两级功率变换(DC/HFAC/LFAC)、变换效率和可靠性高等特点,但存在周波变换器器件换流时的电压过冲现象等缺点,通常需要采用缓冲电路或有源电压箝位电路来吸收存储在漏感中的能量,从而降低了变换效率或增添了电路的复杂性。
因此,在不增加电路拓扑复杂性的前提下,如何解决高频脉冲交流环节逆变器固有的电压过冲现象和实现周波变换器的软换流,是这类逆变器的研究重点。
1 高频脉冲交流环节逆变器电路拓扑族
高频脉冲交流环节逆变器电路拓扑族,如图1所示。这类电路由高频逆变器、高频变压器、周波变换器构成,具有电路拓扑简洁、两级功率变换(DC/HFAC/LFAC)、双向功率流、变换效率高等优点。
图1(a)及图1(b)所示推挽式电路适用于低压输入变换场合,图1(c)~图1(f)所示桥式电路适用于高压输入变换场合;图1(a),图1(c)及图1(e)所示全波式电路适用于低压大电流输出场合,而图1(b),图1(d)及图1(f)所示桥式电路适用于高压小电流输出场合。
(a)推挽全波式
(b)推挽桥式
(c)半桥全波式
(d)半桥桥式
(e)全桥全波式
(f)全桥桥式
图1 高频脉冲交流环节逆变器电路拓扑族
2 双极性移相控制高频脉冲交流环节逆变器稳态分析
2.1 双极性移相控制原理
以全桥全波式电路拓扑为例,其双极性移相控制原理,如图2所示。输出电压uo与正弦基准电压uref比较,经PI调节器得到误差放大信号ue,ue分别与极性相反的两个载波信号uc1及uc2比较后,经上升沿二分频,再按输出滤波电流极性选择导通,得到开关S5及S6的驱动信号。开关S7及S8的驱动信号分别与S5及S6的信号反相互补,并且有换流重叠时间(图2中未画出)。将载波信号uc1二分频后得到开关S1和S4的驱动信号,反相后得到开关S2和S3的驱动信号。
(a)电路拓扑
(b)双极性移相控制原理
图2 高频脉冲交流环节逆变器电路拓扑及其双极性移相控制原理
让周波变换器的功率开关S5与S7(S6与S8)之间存在换流重叠导通时间、功率开关S5与S6(S7与S8)按滤波电感电流iLf极性选择导通,从而使得该控制方案具有如下优点:
1)周波变换器换流重叠期间实现了变压器漏感能量的自然换流,实现了功率器件的零电流开关,解决了固有的电压过冲现象;
2)实现了滤波电感电流的自然续流;
3)滤波电感电流极性选择信号的引入避免了换流重叠期间周波变换器中的环流现象;
4)每个开关周期内两次交流侧的能量回馈实现了逆变桥所有功率器件的零电压开通。
功率开关S5、S6与S1、S4(S7、S8与S2、S3)之间的驱动信号均有相位差θ(0≤θ≤180°),在一个开关周期的共同导通时间DTs/2可表示为
DTs/2=Ts(180°-θ)/(2×180°)(1)
DIY机械键盘相关社区:机械键盘DIY
逆变器相关文章:逆变器原理
dc相关文章:dc是什么
逆变器相关文章:逆变器工作原理
脉冲点火器相关文章:脉冲点火器原理
评论