关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 智能脱扣器系统方案设计

智能脱扣器系统方案设计

作者:时间:2012-07-23来源:网络收藏

首先介绍了脱扣器的硬、软件设计及其关键技术,接着提出了新的数据处理方法,最后总结出一些抗干扰的措施。

本文引用地址:http://www.amcfsurvey.com/article/160276.htm

关键词:脱扣器;采样;快速傅立叶变换;小波变换;抗干扰

0 引言

型断路器是指采用了智能脱扣器的断路器,智能脱扣器使断路器实现了遥测、遥控、遥信和遥调等功能。现在智能脱扣器都采用单片机、DSP等微处理器作为逻辑处理的基础,其发展趋势一是功能越来越多,除了传统的脱扣功能外,还有脱扣前报警功能、线路参数检测功能以及试验功能;另外一种趋势是采用现场总线技术,把设备的网络化作为目标。

本文主要介绍在研制智能脱扣器的过程中,硬件、软件方面需要注意的问题以及相应的处理方法。

1 智能脱扣器的硬件设计

根据智能脱扣器所要实现的功能,硬件可以分为中央处理单元(微处理器及其外围电路)、采样电路、按键显示电路、通讯电路、执行机构等几个部分。

1.1 采样电路

采样电路实现的功能是将外部的电流、电压信号经过互感器、滤波、幅值调整环节后送到微处理器A/D采样通道口。在这些环节要注意以下几个问题。

1)互感器的选择互感器的作用是将线路中幅值很大的电信号线性地转换成可以处理的电信号,其转换的线性和精度将直接影响关键数据的可信度,这些数据是智能脱扣器工作的基础。常用的电流互感器有铁心和空心两种,铁心型互感器在处理小电流时线性度很好,但大电流时铁心容易饱和,从而出现线性失真,测量范围小;空心型在处理大电流时线性度好,测量范围广,但小电流时易受干扰,也会出现线性失真,测量误差大。然而智能脱扣器电流测量范围从几百A到几十kA,变化范围很大,要想在整个测量范围内不失线性,最好采用两种类型互感器相互结合的方法。

2)幅值调整环节由于电流的测量范围很大,而微处理器A/D转换参考电压一般很小,本项目采用CYGNAL公司的C8051芯片作为CPU芯片,其A/D转换参考电压范围为0~3.3V,如果输入电信号幅值超过3.3V一定的时间将会损坏C8051芯片。如果将所有的电信号幅值都降到3.3V以下,那么A/D转换的精度将大大降低,为后面的数据处理带来很大的麻烦。本设计中采用多量程转换的方法,每一种量程中信号送到A/D转换口的幅值最大值都稍小于3.3V,硬件上根据信号幅值大小采用不同的输送通道,当然实现这个功能还要软件上面的判断。

1.2 中央处理单元

本设计中的CPU芯片采用CYGNAL公司的C8051,这是一种新型高速集成芯片,拇指盖大小的体积内集成了8路A/D转换通道、温度传感器、32K的FLASH存储器,WATCHDOG监视器、通讯接口和标准的JTAG程序烧写口。这使控制的外围元器件少、电路简单,从而提高了稳定性和抗干扰能力。

1.3 键盘显示电路

键盘显示电路采用串行接口的7281芯片,该芯片通过外接移位寄存器74HC164,最多可以控制16位数码管或128只独立LED,其驱动输出极性和输出时序均为软件可控,从而可以和各种驱动电路配合。同时,7281芯片不仅可以控制各显示位闪烁属性和闪烁频率,而且可以最多连接64键的键盘矩阵,键盘为互锁式,内部具有消去抖动功能。此外,7281芯片采用高速二线接口与CPU通讯,只占用很少的I/O口和CPU时间。

1.4 执行单元

执行单元采用永磁体的电磁铁,正常工作时在永磁体作用下保持吸合状态,当执行电路接收到CPU发出的脉冲控制信号时,触发达林顿管使线圈通有电流而产生反向磁通,在反力弹簧的作用下铁心打开,带动断路器分断。

1.5 硬件设备比较容易忽视的问题

CYGNAL51芯片自带内部复位和简单的外部复位电路,这部分复位电路是不容易被忽视的。但是在实际运行中,由于键盘和显示是由管理芯片7281所控制的,当程序跑飞后,C8051芯片经过外部或内部复位电路可以重新复位运行,但是C8051芯片的复位无法传送到7281芯片,这时显示板上的显示不会刷新,因此要在C8051芯片复位的同时,让7281芯片也进行复位,可行的解决方法是让C8051芯片和7281芯片共用相同的复位源,这样一旦程序死掉,这两种芯片会同时复位。

2 智能脱扣器的软件设计

软件设计主要分为两个部分,主程序和中断程序。主程序包括故障处理、键盘处理、显示处理、通信处理等子程序;中断程序包括定时器中断、键盘中断、通讯中断等。

单片机对工频电流信号进行采样,每一周波(20ms)可采集32个点,这样采样频率采用6MHz就不会出现失真。由于延时保护要求精度高,因此要先计算电流的有效值。计算电流有效值的方法较多,下面介绍一种较可靠的算法。由于实际信号中叠加有高频信号和非周期信号,为了真实有效地反映被测量信号的本质,有人提出了用FFT算法从测量数据中计算出线路?号的基波参数和高次谐波参数,由于信号基波分量占到总信号的95%以上,所以,计算出来的数据可以作为各种保护算法的依据。电流保护的前提是能否及时正确判断故障发生的时刻。FFT算法通过计算一个周波内基波分量的有效值是否大于门槛值来确定故障情况,这样做可以完成判断任务,但是实时性不高。下面提出一种基于小波分析和FFT的改进算法,小波算法在采样过程中检测到可疑信号点后,由FFT算法进行有效值判断,如果没有超过门槛值,则可疑信号点无效,回到小波算法中继续寻找采样可疑点;如果有效值超过门槛值,则认为可疑点有效,根据保护条件输出相应信号。其算法的流程图如图1所示。

图1 数据处理流程图


上一页 1 2 下一页

关键词: 方案设计 系统 智能

评论


相关推荐

技术专区

关闭