基于CCD图像传感器的路径识别算法分析
摘要:随着汽车工业的发展,汽车智能化成为大势所趋。智能汽车(IV,Intelligent Vehicle)是一种集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它集中地运用了计算机技术、人工智能与自动控制技术、现代传感器技术、信息与通信等技术,是典型的高新技术的综合体。文中以第六届全国大学生”飞思卡尔”杯智能汽车为背景,探讨了基于CCD图像传感器的图像跟踪算法。
关键词:智能车;CCD图像传感器;阈值传递算法;图像跟踪算法;飞思卡尔
智能汽车的一项重要能力就是对环境的感知、对路况信息的分析决策。文中以MC9S12XS128单片机为核心,通过CCD图像传感器获得路径信息,进而进行路径分析,为下一步的控制提供必要的数据信息。
1 CCD图像传感器特点
CCD图像传感器属于电荷耦合器件,组成CCD的基本单元是金属-氧化物-半导体结构。基本单元又分为两类:光敏单元与移位寄存单元。两者的区别在于:前者接受有效频率入射光的刺激产生光电效应,生成信号电荷;后者依靠于前者的相邻且紧密排列形成两者势阱的相互沟通、耦合,借助结电容栅极电压的控制来实现信号电荷从前者向后者的转移(耦合)。根据光线反射的强弱CCD会输出大小不同的电压,通过单片机的AD转化接口将相应电压值转换成大小不同的数值,根据数值大小来分析路径信息。
CCD图像传感器输出的是视频同步信号,经视频同步分离芯片LM1881后,视频信号分成场同步信号、行同步信号、奇偶场信号以及视频信号,电路的典型连接及重要引脚信号如图1所示。利用这些同步信号再加上适当的延时对视频信号进行AD采样,从而得到图像信息。这里采用分辨率为320×240的CCD图像传感器,每场的扫描周期20 ms,因此,单行视频信号的持续时间大约为20 ms/320=62.5μs,将单片机超频到64 MHz,在单行视频信号的持续时间内能采集大约一百个点左右,能很好的满足横向精度要求。每场信号中包含了285个有效行,考虑到CCD图像传感器在纵向上的畸变,采取非均匀采集的方式,通过标定,使采集行在实际位置上是均匀分布的,从而实现每行之间的实际距离大致相等,为后续控制提供了方便。
2 黑线提取算法
在采集完一行图像信息后即对该行数据进行二值化处理,即设定一个阈值,把每个点的数据与阈值比较,通过大小判断该点为黑色或者白色。之后对黑色点的值进行累加求取平均值,在对白色点的值进行累加求平均值,再取两值平均作为下一行的阈值进行判断。阈值计算的公式如下:
式中black[i]为黑点的值,white[j]为白点的值,Hold[row]为下一行的阈值。
这种阈值传递的方法使得的黑白的检测判断更为可靠,排除了光线以及赛道颜色产生的影响。然后遍历一行数据,由于黑线宽度基本能在3~5点,所以,对该点与相邻两点黑白不一致的点进行剔除,用相邻两点均值作为该点的修正值。最后,对整行数据遍历,记录一行数据中黑线边缘位置、黑线中心及黑线出现次数。这样对一行的数据处理完毕。
在采集完一场图像信息后,根据黑线是连续的的特点,对相邻行之间黑线位置进行修正,将不满足连续性的黑线剔除掉,从而准确提取出黑线的分布情况。
评论