基于队列理论CSMA/CA机制的无线传感器异构机制
从上面的式(18)~(20)可以看到操作点参数可以通过数学迭代的方法唯一求出,从而可以得到数据包的传输时间度量。引入M/G/1/K队列理论分析节点中的数据包的传送情况。队列有K个数据包,每个数据包的长度为L,每个数据包的传送时间的概率母函数为Ttr(Z),那么P0和μ0为:
3 仿真验证
通过NS-2仿真软件来验证数据包的实时性能。参考文献所述的仿真搭建我们的仿真平台。所有节点都分布在以sink节点为圆心、半径为5 m的圆内;每个节点都在彼此的传输范围内,节点的传输距离为11 m;每个节点都能侦听到其他节点的传输,也就是说不存在隐藏终端。仿真参数如表1所示。本文引用地址:http://www.amcfsurvey.com/article/159285.htm
根据式(24)的分析,可以看到数据包的传送时间度量(我们将所有的时间度量归一化为backoff时间大小)与MAC参数、系统的操作点、数据包长度和缓存大小有关系。MAC的参数选取backoff计数器的初始值为m=5;backoff阶段值为23;重传计数器为r=3;数据包的长度为L=5个backoff大小。而每种情况的操作点可以根据式(18)~(20)用数学的迭代的方法计算出来。把这些参数应用在实际的仿真环境中,得到了数
据包的平均传送时间,如图3所示。
取R=λ1/λ2,以其作为数据包访问时间的度量基准,并把节点数目的比例作为度量系统非均匀度即非对称度的度量,也就是说,系统的最大非均匀度即最大非对称度是两种节点的数目相当如N1=5,N2=5和N1=13,N2=12,而系统的最小非均匀度是两种节点的数目相差最大如N1 =23,N2=2。从图中得到:随着节点数的增加,数据包的平均delay增加;随着非均匀度的增加,delay会增加;随着队列长度的增加,delay会增加;在R=1时,也就是两种节点的数据包到达率相同,总的数据包数λ1N1+λ2N2在不同的节点组成情况下相等,所有的delay值相同,并且delay达到最大值。从图中看出,仿真结果与分析结果是基本误差在3.251%~8.562%范围内,这个误差是可以允许的。
分析了在R=1的特殊情况下,也就是系统节点为均匀分布时的delay性能,如图4所示。随着数据包到达率的增加,队列长度小的情况如K=1,delay会缓慢增加;对于队列长度大的情况,delay增加比较剧烈;队列长度为6时,delav在λ=0.756时达到最大值。
4 结论
文中采用了两个半马尔可夫链和一个宏观马尔可夫链模型描述了IEEE 802.15.4标准中一种新的CSMA/CA非均匀机制OSTS,并分析提高了网络实时性能。在有限节点数和理想信道的情况下,分析了该机制在非均匀的数据包到达率和非饱和条件下各个数据包访问信道的时间性能,并且通过NS-2仿真验证了分析结果,发现文中的分析与仿真的结果是很吻合的。文中最大的特点是,数据包之间没有优先权的限制,所有包都有相同的机会访问信道,无论是同一种节点还是不同种节点之间,这是与先前分析非均匀网络等中性能仅是各个节点性能的简单代数相加最大的区别。分析了两种节点在相同的数据包到达率条件下的实时性能,发现其访问时间随着到达率的增加急剧增加。
评论