以太网供电方案
以太网供电(PoE)是于2003年6月批准通过的IEEE 802.3afTM标准供电技术,它利用现有的网络5类(CAT-5)数据电缆传输直流电源,在传递信号的同时也将电源传递给用电设备(PD),如IP电话、无线接入点及网络监控摄像头等,省去了本地电源。在PoE系统中,为PD提供电源的设备叫供电设备(PSE)。PD的功耗限制在12.95W,PSE输出功率限制为每个RJ-45端口15.4W。考虑到沿CAT-5以太网线(最长可达100米)传输的电压降,IEEE标准为PD和PSE规定了不同的额定功率。较长的电缆将产生较大的电压降,因此PSE的输出电压要高于标称的48V,以使PD获得足够的功率。
1 供电设备
根据IEEE 802.3af标准,PSE提供PD检测、分级、限流以及电源控制功能。一个有效PD需要具备25kΩ的探测特征,PSE控制器进行PD检测时,按照检测条件用一个2.8~10V的限流电压对信号线进行探测。通过测量V-I,利用斜率计算出端口电阻,对端口连接设备做出判断:有效PD、开路、低阻负载、高阻负载、大电容负载、正电源、负电源。为了避免损坏非PD设备,同时也为了防止输出短路时损坏PSE控制器,PSE在PD检测过程中需要限制电流,通常在2mA以内。另外,PSE还需要累计多个交流周期以便抑制50Hz/60Hz的电力线耦合噪声。
图1
以太网供电技术的最初推动力是VoIP,由于越来越多的以太网设备,如RFID阅读器、PDA充电器、移动电话、笔记本电脑等可以采用这种方便的供电方式,IEEEE802.3af标准定义了五个不同的功率级别,以便PSE高效地管理功率分配。完成PD检测后,PSE控制器将进入PD分级模式,为端口提供15.5V~20.5V电压,并检测进入端口的电流,根据表2所示IEEE 802.3af规定的PD分级标准,可确定PD的功率等级。Maxim推出的MAX5945网络供电控制器可以控制四个独立的端口,采用36引脚SSOP封装,能够实现PD检测、PD分级及AC/DC负载断接检测功能。图1给出了MAX5945的典型应用电路。
PoE网络可以采用端点(endpoint)或中跨(midspan)式PSE实现。端口PSE存在于网络连接的终端。对端点PSE和PD设备来说,电源是通过信号线对儿传输的。因为电源已经通过了以太网连接的端点上,这种PSE类型提供了一种简便的PoE方案,非常适合用来布署新的基础网络。需要对现有以太网进行升级时,可以用中跨PSE方式将电源插入到以太网中。中跨PSE可以通过CAT-5电缆中的“空闲线对儿”传输电源,如果只有几个以太网设备需要供电,这是一个最具成本效益的方法。MAX5945既可用于端点PSE,也可用于中跨PSE,如图2所示。
图2
2 用电设备
对于从以太网供电系统获得电源,用电设备必须符合IEEE802.3af标准规范,要求能够提供PD检测及可编程分级特性信号。PSE进行PD检测时,PD必须提供25kΩ和小于150nf的识别特征,以便PSE将PD从不需要供电的以太网设备中识别出来。分级特征代表PD的峰值功率损耗,要求在PSE向端口提供PD分级检测电压时能够吸收特定的电流,PD的分级电流对应于所示的5个功率等级。当端口电压达30V~40V时,PD处于欠压闭锁状态,以防产生检测和分级干扰。
Maxim针对PD端提供了集PD接口和DC-DCPWM控制器于一体的MAX5941,可用于隔离或非隔离的反激和正激转换器。MAX5941A/MAX5941B的PD接口符合IEEE 802.3af标准,可以为PD提供检测特征信号、分级特征信号和一个具有可编程浪涌电流控制功能的集成隔离开关,还具有宽滞后的供电模式欠压锁定(UVLO)以及“电源好”状态输出等功能。在检测和分级期间,集成的MOSFET提供PD隔离。MAX5941A/MAX5941B保证检测阶段的泄漏电流偏差小于10μA。可编程限流功能防止上电期间产生很高的浪涌电流。这些器件的供电模式UVLO具有宽滞后和长故障消隐时间等特性,以补偿电压在双绞电缆上的阻性衰减,并确保系统在检测、分级和上电/掉电诸状态间无扰动转换。
图3
在分级模式中,如果PSE提供最高直流电压,从GND至VRCL的最大压降为13V。如果42mA的最大分级电流通过MAX5941A/MAX5941B,则最大直流功耗将接近546mW,略高于IC在最高工作温度时的最大直流功能。不过,根据IEEE 802.3af标准,分级模式的持续时间被限制在75ms(最大值)内。MAX5941A/MAX5941B可以在最大持续时间内承受这个最大分级功耗,而不会造成任何内部损坏。如果PSE违反IEEE802.3af标准,超出了这个75ms最大分级时间,则有可能损坏IC。
评论