将MicroTCA导入无线基带设计
MicroTCA正在成为嵌入信号处理应用,尤其是高性能的多处理器系统中日益普及的标准。这些标准采用了可满足“运营商级”电信设备需求的先进中间卡(AdvancedMC),从而找到了进入电信应用的途径,如无线基带处理。
本文引用地址:http://www.amcfsurvey.com/article/157640.htm无线基带处理是一种高需求的应用,它需要高能效的解决方案。任何系统还必须柔性地适应多种标准的要求,并适应快速发展的各个电信标准。本文讨论了设计过程中的各种因素,包括处理器、互连和软件平台的选择。
对于这种灵活、高性能的应用,处理器的主要选择是DSP和FPGA。过去,DSP 是标准的解决方案,但FPGA供应商已经提高了自己的信号处理能力:今天的很多应用得益于一种结合DSP和FPGA的混合式多处理器系统。一个高速互连能够使一个子系统包含多个DSP(如3或4个)和一个FPGA,使设计者提供正确的性能组合,去满足自己的系统要求。
当硅片供应商继续增加自己的DSP和FPGA性能,并增加多个核心来提升马力时,嵌入系统设计者必须确保自己的数据交换架构能跟上这个步伐。分布式应用需要多种层次上的互连:一块电路板上的芯片之间、一个背板上的电路板之间以及多个机架之间的互连。
一个具有2x2多输入多输出(MIMO)的20MHz WiMAX基带系统要求大约1.5Gbps的天线数据速率。支持三扇区的典型基站要求超过4.5Gbps的联合接口速率,它可以通过三个独立的射频头连接或一个链式单连接而得到支持。基于开放标准的接口(如CPRI或OBSAI)可以用于数据的成帧。当支持信道采用扩频技术编码(如CDMA)的MIMO系统时,所有基带处理块都有来自所有天线的数据。
除了原始性能以外,设计者还必须考虑自己所选结构的成本,包括初始投资费用和运营成本。他们还应寻求标准接口,使自己的设计能够实现跨不同平台的重用,包括现在与未来,并且能够从支持标准的一系列供应商中作出选择。
无线基带信号处理的互连
对于高性能信号处理应用,现在一般考虑四种结构:InfiniBand、PCI Express(PCIe)、以太网和Serial RapidIO(SRIO)。
InfiniBand开始有英特尔公司的强大支持,但该公司后来停止了自己的开发支持,转向支持PCI Express。InfiniBand设计为一种交换式结构互连,可以用于局域网和企业网,但近来更多地定位在存储应用。虽然从技术方面它提供很好的特性,尤其是在管理方面,但它并未设法在嵌入应用中立足,而且没有供它使用的AdvancedMC规范。
PCIe是PCI的串行版,提供每通路(lane)最大2.5Gbps的数据速率,一般MicroTCA中每个AdvancedMC限制为四通路。PCIe特别适合作为一种快速低成本的外设、I/O与主处理器的连接方式。它还有良好的支持和不错的采用数量,有些DSP和FPGA供应商把它作为一种原生接口。不过,在超过一定数量设备情况下,PCIe并不具有良好的缩放性,并且不适合多主处理器环境,如机架互连。
因此,PCIe一般用于与一个独立数据结构相关的点对点连接,反映在最近公布的SCOPE Alliance AdvancedMC Hardware Profile上。很多情况下,实际上是在以太网(千兆和10GigE)与SRIO之间作数据结构的选择。
在很多应用类型中,以太网都是一种常见的选择。WiMax和LTE是以太网上的 IP技术。以太网用于基站回程网的传输正在引起注意。千兆以太网今天已发展出不同版本,得到广泛使用,10GigE通过XAUI标准在 AdvancedMC中得到支持。自从以太网在广域网中的早期应用以来,它已变得无处不在。
千兆以太网提供点对点的分组架构,数据包大小可变。MicroTCA用其作为基本结构,几乎确保能得到控制平面上机架内所有AdvancedMC的支持。现在没有针对千兆以太网的通用服务质量(QoS)标准,越来越多的路由器与交换机提供一些QoS特性,使基本结构也能用于低带宽的数据平面传输。
评论