新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于FPGA的雷达数字脉冲压缩技术

基于FPGA的雷达数字脉冲压缩技术

作者:时间:2010-12-11来源:网络收藏

是指对发射的宽信号进行调制(如线性调频、非线性调频、相位编码),并在接收端对回波宽信号进行脉冲处理后得到窄脉冲的实现过程。脉冲有效地解决了作用距离与距离分辨率之间的矛盾,可以在保证在一定作用距离下提高距离分辨率。
  
线性调频信号的脉冲压缩
  
脉冲压缩的过程是通过对接收信号s(t)与匹配滤波器的脉冲响应h(t)求卷积的方法实现的。而处理信号时,脉压过程是通过对回波序列s(n)与匹配滤波器的脉冲响应序列h(n)求卷积来实现的。匹配滤波器的输出为:

     (1)
  
依据式(1)的实现方法叫做时域相关法。根据傅里叶变换理论,时域卷积等效于频域相乘,因此,式(1)可以采用快速傅里叶变换(FFT)及反变换(IFFT)在频域内实现,称为频域快速卷积法。
  
用频域方法实现脉压,其基本原理是先对外部采样信号进行快速傅里叶变换(FFT)以求得回波信号频谱S(w),再将S(w)与匹配滤波器频谱H(w)进行乘积运算,最后对乘积结果进行快速傅里叶逆变换(IFFT)得到脉压结果Y(n),用公式表示为

    (2)
  
频域快速卷积法的原理如图1所示,存储器中存储的是匹配滤波器传递函数H(k)。

本文引用地址:http://www.amcfsurvey.com/article/151248.htm

  图1 频域脉冲压缩原理框图

  
依据匹配滤波理论,匹配滤波器的脉冲响应h(n)及传递函数H(k)为
  h(n)=s1(-n),H(k)=s1(k) (3)
  
其中, s(n)为雷达发射信号序列;S(k)为信号序列频谱。
  
数字脉冲压缩系统
  
1 系统构成和硬件设计
  
本系统是单脉冲雷达信号处理机的一部分,由于单脉冲雷达所需要处理的距离、方位/俯仰两路信号来自同一发射信号源的目标反射回波,要求对两路信号进行同时、同频ADC采样和完全相同算法的脉冲压缩处理。针对这一特点,雷达数字脉冲压缩系统将相同的脉冲压缩处理功能移至两片芯片内。由于对雷达体积、重量、功耗等指标有特殊要求,本系统采用二个通道的脉冲压缩处理硬件结构,即方位和俯仰两路信号分时共用一个脉冲压缩通道。雷达信号处理分系统硬件结构如图2所示。

  图2 雷达信号处理分机硬件结构图

  
系统中,数据采样后分为和路和差路(包括航向差和俯仰差)两组数据,分别输入两片单独进行脉冲压缩计算,脉冲压缩后再送入后端的DSP做谱分析,以确定目标的距离、速度、方位等情况。由框图中我们看到,不仅要对数据做脉冲压缩计算,还承担了对输入数据处理和读写状态寄存器的任务。状态寄存器存储了脉冲压缩计算的控制参数,由后端的DSP根据分析的结果对其做相应的控制。
  
2 软件设计
  
根据位内运算结构的特点,针对芯片内嵌的块RAM资源丰富的优势,脉冲压缩系统采用两片存储器的乒乓操作,在FFT的每一级运算中使一片双口RAM的两个端口同时处于读或写状态,达到每个时钟周期输出两个操作数的需要。而且,数据经蝶算单元运算结束后以相同的地址写入另一片双口RAM,节省了写地址生成的时间,为设计高速的FFT系统提供了可能。
  
如图3所示,采用两片中间级RAM:RAMA和RAMB,用它们来完成乒乓操作。地址产生模块生成的读地址同时与中间级的两片RAM相连,控制相应的RAM读取所需的操作数,操作数经蝶算模块运算后以同址方式写入到另一片RAM的两个端口。RAM的读写由地址产生模块生成的写使能信号控制,处于读状态的RAM写使能置零,而另一片的写使能端置高,处于写状态。而且,RAM被设置为写状态时输出端口不输出,以减少RAM的读取次数。这样,输入RAM变为输出RAM,输出RAM变为输入RAM,如此反复,直到FFT最后一级。

  图3 脉冲压缩系统的结构框图

  


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭