LTE系统中转换预编码的设计及实现
Lte所选择的上行传输方案是一个新变量:SC-FDMA(单载波-频分多址)相比于传统OFDMA其优点是既有单载波的低峰均功率比(PAPR),又有多载波的可靠性。在上行链路这点特别重要,较低的PAPR可在传输功效方面极大提高移动终端的性能,因此可延长电池使用寿命。代表LTE物理上行共享信道(PUSCH)的基带信号产生过程如图1所示[1]。
本文引用地址:http://www.amcfsurvey.com/article/148763.htm图1中的转换预编码是由一种对称形式DFT完成,其种类及变换长度L=2k1×3k2×5k3(L≤1 200)见表1。
转换预编码是根据不同的输入长度L动态地执行表1中的一种DFT。其主要特点是包含的DFT种类多、规模庞大,这给硬件设计带来挑战。以前的文献大都以基2或单个混合基FFT[6]为重点进行阐述,而以多种混合基FFT为核心的文章还很难发现。本文提出一种基于FPGA的转换预编码解决方案。
1 算法选择
Cooley-Tukey算法和Good-Thomas算法是当前流行的FFT算法,文献[2]中已对其原理进行过深入讨论,这里不再赘述。
(1)Cooley-Tukey算法具有良好的模块性,并且可以实现原位计算,对输入数据以及旋转因子的抽取具有规律性。文献[3]提出的一种基3 FFT算法是Cooley-Tukey算法应用在基3 FFT中的另一种表述。这一算法区别于其他FFT算法的一个重要事实就是因子可以任意选取,通用性强,且所有的运算单元均相同,易于实现。
(2)Good-Thomas算法只适合因子互质的情况,由于避免了中间级乘旋转因子的运算,因此比Cooley-Tukey算法的运算次数少得多。FFT点数越大,越能体现其在节省资源方面的优点。
文献[4]提出一种基于Cooley-Tukey算法的传输预编码解决方案。此方案的优点是操作简单、模块规则、利于编程实现;缺点是需要做的级间旋转因子乘法较多(最多达几百),乘法器和存储器等硬件资源开销较大,同时将大大增加系数初始化的工作量。对几种不同长度FFT运算量进行比较见表2。
表2中的混合算法指Good-Thomas算法与Cooley-Tukey算法相结合。可以看出,Good-Thomas算法与Cooley-Tukey算法相结合与文献[4]相比,减少了级间旋转因子乘法数,可以有效降低运算量,这些运算量的降低对整个系统的实现起着至关重要的作用,而其付出的代价只是复杂度的略微提升。
综上所述,在实现混合FFT时,选择Good-Thomas算法与Cooley-Tukey算法相结合,且优先选择Good-Thomas算法,其次为Cooley-Tukey算法,系统设计将从Good-Thomas算法出发。
2 总体结构设计
从表1中看出,LTE上行转换预编码要进行的FFT变换种类多,但每一种变换的架构是相似的,都是由基2及非基2点FFT的公共模块组成。基2有点数为4,8,16,32,64,128,256的模块,非基2的有点数为3,9,15,27,45,75,81,135,225和243的模块,只要抽出这些公共模块并精心设计,再合理地调用,就会顺利完成这个看似繁琐的工作。
图2所示总体结构框图中,模块A和C分别为数据输入和输出模块;模块B为数据处理模块,其主要思想是动态配置和公共模块的复用,内部FFT模块事先单独生成,MUX1,MUX2是选择器,在不同输入点数的情况下动态配置不同的内部FFT模块来组合成外层FFT,这样内部FFT模块就可以达到复用的目的,可以大大减少总体资源耗用,而处理速度也与单独执行各FFT相当。
3 硬件实现
在实际应用中,一般由FPGA完成需要快速和较为固定的运算,由DSP完成灵活多变和运算量较大的任务[7]。Xilinx Virtex-5 SXT平台针对具有低功耗串行连接功能的DSP和存储器密集型应用进行了优化,具有硬件结构可重构的特点,适合算法结构固定、运算量大的前端数字信号处理,可以大量卸载这些功能,释放DSP带宽以处理其他功能,所有这一切都使得FPGA在数字信号处理领域显示出自己特有的优势。
3.1 地址映射
以1 080点FFT在图2所示系统中的实现过程分析系统工作原理。因为1 080=8×135,且8和135互质,故外层采用Good-Thomas算法。
输入地址映射:
FPGA内嵌Block RAM的使用可以大大节省FPGA的可配置逻辑功能块(CLB)资源。Good-Thomas算法需要对输入输出数据进行排序,输入输出端处理方法相同,这里只介绍输入端处理。在输入端,鉴于Block RAM的特征,设置一个ROM和RAM,如图2模块A所示。对于不同长度的FFT,ROM不同,但RAM可以共用。在ROM里预先存放输入数据在RAM1中的位置序号,此位置序号由(1)式得到,在时钟沿到来时,先顺序读出存储在ROM中的位置序号,将此数作为RAM1的地址输入,就能将输入数据存放到RAM1中的不同位置。这样在输入数据的同时完成了数据的排序,一举两得。1 080点FFT的输入和输出端地址索引如图2所示,其逻辑时序图见图3。图3中,RAM_in由测试数据xn_i和xn_r进行位拼接后输入。
3.2 内部FFT处理单元
当进行图2模块B中的操作时,内部FFT模块先单独生成。Xilinx提供的FFT IP核适用于基2点的FFT变换,其所采用的算法为Cooley-Tukey算法,变换长度为N=pow2(m),m=3~16,数据采样精度和旋转因子精度都为8~24,故模块B的8、16、32、64、128及256点FFT都可用IP核生成。选择“Pipelined,streaming I/O”生成基2点FFT模块,可以减少整体处理时间。15、45、75、135、225点FFT模块的外层算法是Good-Thomas算法,其余采用Cooley-Tukey算法实现。
评论