TD-LTE多模基带平台ARM子系统的运行流程控制和异常定位分析
引言
本文引用地址:http://www.amcfsurvey.com/article/148157.htm随着多核产品的日益普及,对跟踪调试系统解决方案的性能要求也愈来愈高。ARM公司针对复杂片上系统(SoC)设计推出了高度可配置的跟踪调试解决方案ARMCoreSightSoC,它满足了软件开发人员在SoC设计方面需要更高可视性的要求。在嵌入式应用系统复杂性越来越高的今天,跟踪调试技术在整个系统开发过程中所占的比重也越来越大。因此,拥有高效、强大的跟踪调试技术可以大大减少整个系统的开发时间,缩短产品面市时间,减轻系统开发的工作量。
在TD-LTE多模基带平台的开发中,既要满足多种模式(TD-LTE、TD-SCDMA和GSM)下跟踪技术的一致性,又要满足TD-LTE的高效率要求,更要保证跟踪信息的有序性、正确性和实时性,这对跟踪技术提出了更高的要求。通过对原始跟踪技术方案与新跟踪方案的性能进行对比分析,来选择更加适合TD-LTE多模基带平台的跟踪软件技术。
1 总体概述
在多模终端的开发中,跟踪技术对终端的性能有着至关重要的作用。由于本项目是多模单带芯片的开发,多种系统的模式切换对微处理器的要求较高,鉴于ARM11系列处理器具有超强的性能,采用ARM新指令架构——ARMv6设计实现,故本项目采用ARM1176JZ内核。
ARMv6架构通过以下几点来增强处理器的性能:
①多媒体处理扩展,使MPEG4编码/解码速度和音频处理速度加快一倍;
②增强的Cache结构,实地址Cache4减少Cache的刷新和重载,减少上下文切换的开销;
③增强的异常和中断处理,使实时任务的处理更加迅速;
④支持Unaligned和Mixed-endian数据访问,使数据共享、软件移植更简单,也有利于节省存储器空间。
在多模芯片的开发中,本项目将跟踪技术作为芯片软件开发中的一个小模块来处理,其系统结构如图1所示。
当其他模块有跟踪信息打印时,其他模块调用TRACE模块提供的打印函数。TRACE模块接收到打印信息后,通过设置打印参数来判断是否需要把这些打印信息发送到PC机。如果需要,则通过UART串口将打印信息传送到PC机的TRACE跟踪软件,TRACE模块对其进行解码之后,通过解码软件显示出来。
2 原始跟踪方案
2.1 缓存管理机制
原方案中的缓存管理机制采用备份缓存管理机制,采用含跟踪头和跟踪信息的跟踪信息帧格式,将跟踪信息写入一个大小为128 KB的全局跟踪信息缓存中。为避免在任务切换频繁时,当前任务被高优先级任务打断造成数据丢失,申请一个16 KB的备份缓存用于存放高优先级任务跟踪信息。若当前跟踪源在进行写人操作,高优先级任务调用跟踪接口,当前跟踪源的任务就被抢占,则将高级任务的跟踪信息写入备份缓存中,当前跟踪源继续进行当前未完成的写操作。
每次写完当前跟踪信息,检查备份缓存中是否有数据,若有,则将备份缓存中的跟踪信息拷回至全局跟踪信息缓存中,从而保证全局跟踪信息缓存中跟踪信息的连续性,原始方案跟踪缓存场景图如图2所示。在本方案中,缓存机制内部采用svnsprintf函数将跟踪信息写入缓存,该函数可以满足跟踪源打印多个变量的值,通过遍历参数列表,找出跟踪源需要打印参数的类型和个数,这样跟踪源在打印动态临时字符串时使用统一的跟踪接口,使其他模块的跟踪源在使用跟踪接口时更加方便。
2.2 跟踪控制机制
原始方案的跟踪通过类别和进程进行控制,进程的控制包括变量、主函数和子函数。PC端通过跟踪控制工具发送相应的AT命令,在终端的内存中读取相应的设置值。若读取的设置值与跟踪源的值相等,则打印出该条跟踪;若不相等,则丢弃本条跟踪。在本方案中所有的跟踪控制都是在跟踪接口内部,这样对各种跟踪信息的控制更加明确和具体,通过switch…case语句对跟踪类型进行判断,从而决定屏蔽跟踪信息还是打印跟踪信息。原始跟踪控制图如图3所示,每种模式的跟踪控制都采用同样的机制,图3中以TDS模式下的跟踪控制为例进行介绍。
2.3 传输控制机制
实时跟踪系统通过串口在PC端和ARM子系统之间进行通信,采用DMA总线控制器进行跟踪信息搬移。DMA是一种不经过ARM处理器的CPU,可直接从内存中存取数据的数据交换模式。在DMA模式下,CPU只需向DMA总线控制器下达指令,就可使其处理数据的传送,接收数据传送完毕的反馈信息,从而大大降低了CPU资源占有率。传输控制单元采取DMA同步中断发送跟踪信息,每次以等长字节传输,将跟踪信息搬移至串口发送寄存器中,再通过配置串口发送寄存器,将跟踪信息发送至PC端解析显示单元。
3 优化后跟踪方案
3.1 新跟踪缓存的管理
本设计方案采用的缓存机制是利用所有跟踪函数在进入跟踪时,均能够确切知道当前跟踪信息所需存储空间长度的特点,为当前跟踪信息预留出所需要的存储空间。当低优先级任务的跟踪信息被高优先级任务跟踪信息抢占时,内存中已经为低优先级任务的跟踪信息预留了存储空间,不会导致跟踪信息丢失和错乱的情况,新缓存机制图如图4所示。
通过维护两个写索引和一个全局读索引来管理缓存,其中两个写索引分别为全局写索引和当前写索引,全局写索引用来与全局读索引进行匹配,通过这两个索引来计算缓存的剩余空间和已用空间,从而判断何时发送和写入跟踪信息;而当前写索引的作用就是为当前的跟踪信息预留空间。在本设计中摒弃了svnprintf函数,采用memcpy函数直接将跟踪信息写入缓存中,并且采用固定参数的跟踪接口,跟踪源根据跟踪信息的不同需求,调用相应变量的跟踪接口。
评论