新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于改进遗传算法的支持向量机特征选择

基于改进遗传算法的支持向量机特征选择

—— Feature Selection for SVM Based on Improved Genetic Algorithm
作者:张子宁 单甘霖 段修生 张岐龙 军械工程学院光学与电子工程系时间:2010-02-05来源:电子产品世界收藏

  引言

本文引用地址:http://www.amcfsurvey.com/article/105942.htm

  是一种在统计学习理论的基础上发展而来的机器学习方法[1],通过学习类别之间分界面附近的精确信息,可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以使类与类之间的间隔最大化,因而有较好的泛化性能和较高的分类准确率。由于具有小样本、非线性、高维数、避免局部最小点以及过学习现象等优点,所以被广泛运用于故障诊断、图像识别、回归预测等领域。但是如果缺少了对样本进行有效地特征选择,在分类时往往会出现训练时间过长以及较低的分类准确率,这恰恰是由于支持向量机无法利用混乱的样本分类信息而引起的,因此特征选择是分类问题中的一个重要环节。特征选择的任务是从原始的特征集合中去除对分类无用的冗余特征以及那些具有相似分类信息的重复特征,因而可以有效降低特征维数,缩短训练时间,提高分类准确率。

  目前特征选择的方法主要有主成分分析法、最大熵原理、粗糙集理论等。然而由于这些方法主要依据繁复的数学理论,在计算过程中可能存在求导和函数连续性等客观限定条件,在必要时还需要设定用来指导寻优搜索方向的搜索规则。遗传算法作为一种鲁棒性极强的智能识别方法,直接对寻优对象进行操作,不存在特定数学条件的限定,具有极好的全局寻优能力和并行性;而由于遗传算法采用概率化的寻优方法,所以在自动搜索的过程中可以自主获取与寻优有关的线索,并在加以学习之后可以自适应地调整搜索方向,不需要确定搜索的规则。因此遗传算法被广泛应用在知识发现、组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

  基于改进遗传算法的特征选择

  遗传算法是一种新近发展起来的搜索最优化算法[2~5]。遗传算法从任意一个的初始生物种群开始,通过随机的选择、交叉和变异操作,产生一群拥有更适应自然界的新个体的新一代种群,使得种群的进化趋势向着最优的方向发展。图1中所示的是标准的遗传算法的流程框图。

  传统的遗传算法存在早熟收敛、非全局收敛以及后期收敛速度慢的缺点,为此本文提出了一种能够在进化过程中自适应调节变异率,以及利用模拟退火防止早熟的改进遗传算法,同时该算法利用敏感度信息可以有效地控制遗传操作。图2是改进遗传算法的流程框图。


上一页 1 2 3 4 5 下一页

评论


相关推荐

技术专区

关闭